

8-way 4-20mA or 0-10V to network Modbus TCP and MQTT data acquisition

module WJ188

Product features:

- •Convert 8 analog signals into standard Modbus TCP protocol
- •Using a 12 bit AD converter, the measurement accuracy is better than 0.1%
- The accuracy of the calibration module can be programmed through the network
- Supports communication protocols such as TCP Server, UDP, MQTT, etc
- Built in web page function, data can be queried through web pages
- •Users can set module IP addresses and other parameters on the webpage
- •Wide power supply range: 8~32VDC
- •High reliability, easy programming, and easy application
- •Standard DIN35 rail installation, convenient for centralized wiring
- •Low cost, small size, modular design
- Dimensions: 106 mm x 59mm x 37mm

Typical applications:

- Signal measurement, monitoring, and MQTT reporting
- •Modbus TCP network, data acquisition
- •Intelligent building control, security engineering and other application systems
- •Industrial automation control system based on TCP network

diagram 1 WJ188 module appearance diagram

- Equipment operation monitoring, MES system
- •Measurement of sensor signals
- Acquisition and recording of industrial field data
- Development of medical and industrial control products
- 4-20mA or 0-5V signal acquisition

Product Overview:

The WJ188 product is an IoT and industrial Ethernet acquisition module that enables transparent data exchange between sensors and networks. The analog data from sensors can be forwarded to the network.

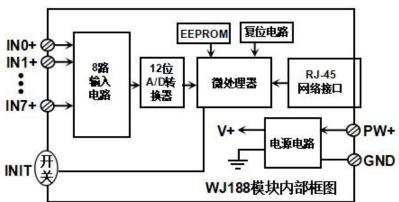


Figure 2 Internal Block Diagram of WJ188 Module

The WJ188 series products include power conditioning, analog acquisition, and RJ-45 network interface communication. The communication method adopts MODBUS TCP protocol. TCP is a transport layer based protocol that is widely used and a reliable connection oriented protocol. Users can directly set module IP addresses, subnet masks, etc. on the webpage. Can be used for monitoring and controlling the operation of sensor devices.

The WJ188 series products are intelligent monitoring and control systems based on microcontrollers, where user set

module IP addresses, subnet masks, and other configuration information are stored in non-volatile memory EEPROM.

The WJ188 series products are designed and manufactured according to industrial standards, with strong anti-interference ability and high reliability. The working temperature range is -45 °C to+80 °C.

Function Introduction:

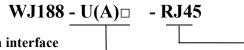
The WJ188 remote I/O module can be used to measure 8 analog signals.

- 1. Analog signal input
- 12 bit acquisition accuracy, 8 analog signal inputs. All signal input ranges have been calibrated before the product leaves the factory. During use, users can also easily program and calibrate themselves. Please refer to the product selection for specific current or voltage input range.

2. Communication Protocol

Communication interface: RJ-45 network interface. The two indicator lights at the network port position, the Link light (green light) stays on and the Data light (yellow light) stays on after the network cable is plugged in.

Communication protocol: MODBUS TCP protocol is adopted to achieve industrial Ethernet data exchange. It can also communicate with modules through TCP sockets.


Network cache: 2K bytes (for both sending and receiving)

Communication response time: less than 10mS.

3. Anti interference

There is a transient suppression diode inside the module, which can effectively suppress various surge pulses and protect the module.

Product model:

Communication interface

RJ45: Output as RJ-45 network interface
Input voltage or current signal value

01.	0 3 1		0 111111
U2:	0-10V	A2:	0-10mA
		A3:	0-20mA
U4:	0-2.5V	A4:	4-20mA
U5:	0-±5V	A5:	0-±1mA
U6:	0-±10V	A6:	0-±10mA

A7: 0-±20mA

U8: User defined A8: User defined

Selection example 1: Model: **WJ188-A4-RJ45** represents 8 channels of 4-20mA signal input, and the output is an RJ-45 network interface

Selection Example 2: Model: WJ188-U1-RJ45 represents 8-channel 0-5V signal input, and the output is an RJ-45 network interface

WJ188 General Parameters:

(Typical @+25 °C, Vs is 24VDC)

Input type: current input/voltage input

Accuracy: 0.1%

Temperature drift: ± 50 ppm/°C (± 100 ppm/°C, maximum)

Input resistance: 150 Ω (4-20mA/0-20mA/0- \pm 20mA current input)

 $300~\Omega~(0\text{-}10\text{mA/0-}\pm~10\text{mA}~\text{current~input})$

1.5K Ω (0-1mA/0- \pm 1mA current input)

Greater than 200K (5V/10V voltage input)

Greater than 1M Ω (input voltage below 2.5V)

Bandwidth: -3 dB 10 Hz

Conversion rate: 16FPS (factory default value, users can modify the conversion rate on the webpage.)

You can set the AD conversion rate to 2SPS, 4SPS, 8SPS, 16SPS, 32SPS, 50SPS, 80SPS, 100SPS by sending

commands

Common mode rejection (CMR): 120 dB (1k Ω Source Imbalance @ 50/60 Hz) Normal mode suppression (NMR): 60 dB (1k Ω Source Imbalance @ 50/60 Hz)

Input protection: overvoltage protection, overcurrent protection

Communication: MODBUS TCP communication protocol or TCP socket character protocol or MQTT protocol

Web page: Supports web access module and web page setting module parameters.

Interface: RJ-45 network interface.

Communication response time: 10 ms maximum

Working power supply:+8~32VDC wide power supply range, with internal anti reverse and overvoltage protection

circuits

Power consumption: less than 3W Working temperature: -45~+80 °C

Working humidity: 10~90% (no condensation)

Storage temperature: -45~+80 °C

Storage humidity: 10~95% (no condensation) Dimensions: 106 mm x 59mm x 37mm

Pin definition and wiring:

Pin	name	Description	Pin	name	Description
one	IN0+	Analog signal 0 input positive terminal	eleven	RJ-45	RJ-45 network interface
two	IN0-	Analog signal 0 input negative terminal	eleven	KJ-43	KJ-45 network interface
three	IN1+	Analog signal 1 input positive terminal	twelve	IN4-	Analog signal 4 input negative terminal
four	IN1-	Analog signal 1 input negative terminal	thirtee n	IN4+	Analog signal 4 input positive terminal
five	IN2+	Analog signal 2 input positive terminal	fourte en	IN5-	Analog signal 5 input negative terminal
six	IN2-	Analog signal 2 input negative terminal	fifteen	IN5+	Analog signal 5 input positive terminal
seven	IN3+	Analog signal 3 input positive terminal	sixtee n	IN6-	Analog signal 6 input negative terminal
eight	IN3-	Analog signal 3 input negative terminal	sevent een	IN6+	Analog signal 6 input positive terminal
nine	PW+	Positive end of power supply	eighte en	IN7-	Analog signal 7 input negative terminal
ten	GND	Negative terminal of power supply, signal common ground	ninete en	IN7+	Analog signal 7 input positive terminal

Note: The pins with the same name are internally connected

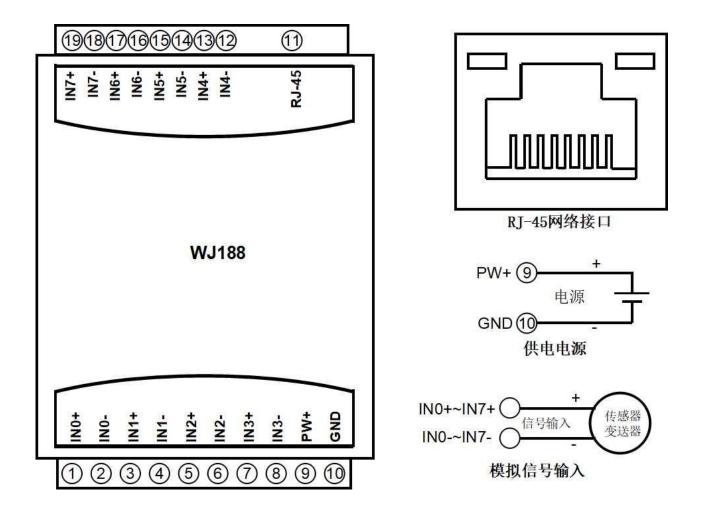
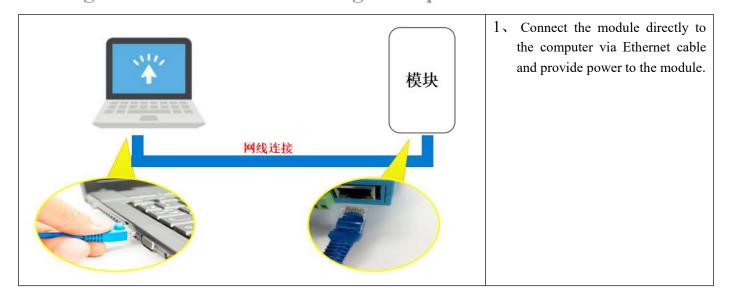
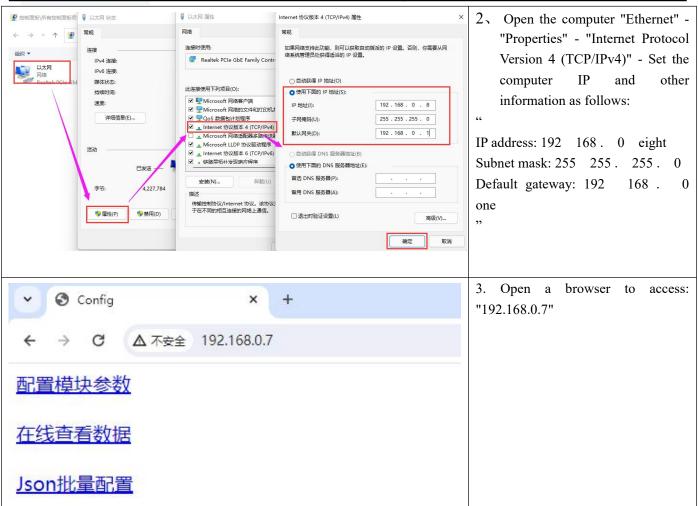
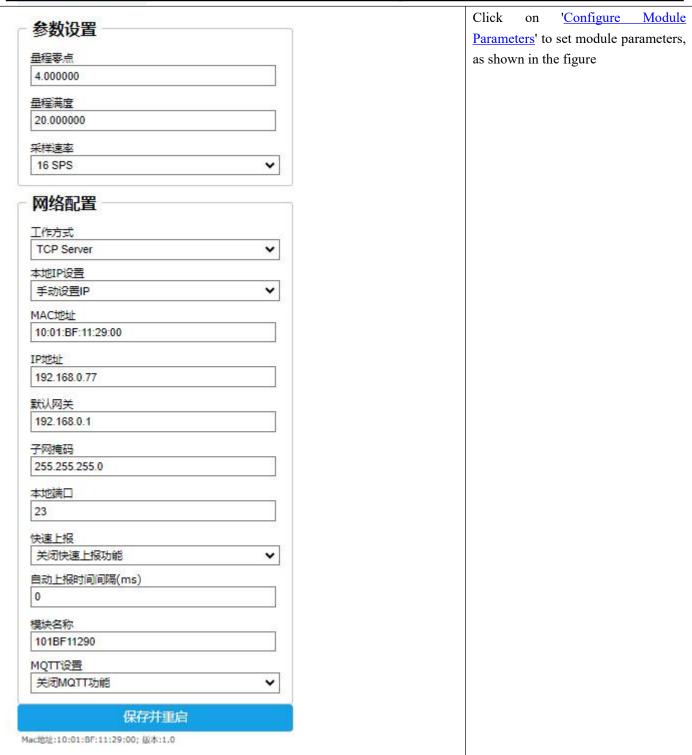




Figure 3 Wiring diagram of WJ188 module


Configure WJ188 module through computer

Character Communication Protocol:

MQTT protocol: After a successful connection, a command is sent to the MQTT subscription topic of the module, and the replied data is displayed on the MQTT publication topic of the module.

Under working modes such as TCP Server, TCP Client, UDP Mode, Web Socket, etc.: After a successful connection, commands can be sent and data can be received.

(1) Read data command

Send: # 01 (If timed automatic reporting is set, there is no need to send commands, the module will report data at regular intervals)

Reply: {"devName": "101BF11290", "time": 295222, "ADC": [20132073,0,0,0,0,0], "actual data": [4.983146, 5.01232,4.00000, 4.000000, 4.000000, 4.000000], "overRanger": [0,0,1,1,1,1,1]} Format Description:

The module name 'devName' can be modified on the webpage as needed

The internal time of the 'time' module, measured in mS.

The AD conversion data collected by the ADC module ranges from 0 to 32767. 0=zero point; 32767=full degree.

For example, 4-20mA input: 0=4mA; 32767=20mA; Users can also directly use the converted engineering values.

OverRanger "0 indicates normal, 1 indicates input signal below zero, and 2 indicates input signal above full scale.

The 'practicalData' data is a value obtained by converting the zero point and fullness set by the user on the webpage. Generally, this value can be directly used for general applications.

No need to process the data in the ADC.

You can also read a single set of data:

#01>ADC reply: {"ADC": [20132073,0,0,0,0,0,0]}

#01>actual data reply: {"actual data": [4.983146, 5.01232, 4.000000, 4.000000, 4.000000, 4.000000,

4.000000,4.000000,4.000000]}

#01>overRanger reply: {"overRanger": [0,0,1,1,1,1,1]}

(2) Set range

Send: \$01 {"range": [0,20]}

Reply: 101 (cr) indicates successful setting? 01 (cr) indicates a command error

3. Read configuration commands

The configuration parameters of the reading module can also be viewed directly on the webpage.

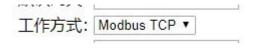
Send:% 01ReadConfig

```
Reply: {"version": "V1.0", "rangeStart": 4.000000, "rangeEnd": 20.000000, "dataRate": 3, "setIP": 1, "mac": "10:01: BF: 11:29", "ipAddress": "192.168.0.7", "gateway": "192.168.0.1", "netmask": "255.255.255.0", "workmode": 0, "localPort": 23, "remoteServerIP": "192.168.0.160", "remotePort": 23, "setQuickUp": 0, "sendTime": 0, "devName": "101BF1120" 90 "," setMQTT ": 0," mqttHostURL ":" broker. emqx. io "," contentId ":" 101BF11290 "," username ":" "," passwd ":" "," topic ":"/wayjun/sub "," port ": 1883," pubTime ": 0," subtopic ":"/wayjun/sub "}
```

4. Set configuration commands

The configuration parameters of the module can also be set directly on the webpage. You can set all or some parameters, and the module will automatically restart after setting.

send out:


%01WriteConfig{"version":"V1.0","rangeStart":4.000000,"rangeEnd":20.000000,"dataRate":3,"setIP":1,"mac":"10:01: BF:11:29:00","ipAddress":"192.168.0.7","gateway":"192.168.0.1","netmask":"255.255.255.0","workmode":0,"localPort ":23,"remoteServerIp":"192.168.0.160","remotePort":23,"setQuickUp":0,"sendTime":0,"devName":"101BF11290","set MQTT":0,"mqttHostUrl":"broker.emqx.io","clientId":"101BF11290","username":"","passwd":"","topic":"/wayjun/pub", "port":1883,"pubTime":0,"subtopic":"/wayjun/sub"}

You can also set only a single parameter, such as modifying IP:% 01WriteConfig {"ipAddress": "192.168.0.7"}

Reply: 101 (cr) indicates successful setting? 01 (cr) indicates a command error

Modbus TCP protocol

The module defaults to one Modbus TCP Server at the factory, no need to set it up, just communicate according to the Modbus TCP protocol. If more Modbus TCP servers are needed, please change the module's working mode to Modbus TCP in the configuration parameters. Supports up to 6 Modbus TCP servers.

(1) Modbus TCP data frames:

Transmission over TCP/IP Ethernet, supporting Ethernet II and 802.3 frame formats. As shown in Figure 3, the

Modbus TCP data frame consists of three parts: packet header, function code, and data.



Figure 6: Request/Response of MODBUS on TCP/IP

(2) MBAP message header description:

The MBAP header (MBAP, Modbus Application Protocol, Modbus Application Protocol) is divided into 4 fields, totaling 7 bytes, as shown in Table 1.

Table 1: MBAP Message Header

Domain	Length (B)	Description	
Transmission	2 bytes	Indicate the transmission of a MODBUS query/response	
identification			
Protocol Logo	2 bytes	0=MODBUS protocol	
Length	2 bytes	Subsequent byte count	
Unit identifier	1 byte	Identification code of remote slave station connected on	
		serial link or other bus	

(3) Modbus function code:

Modbus function codes are divided into three types, namely:

- (1) Public Function Code: Defined function codes that ensure their uniqueness and are recognized by Modbus.org;
- (2) There are two sets of user-defined function codes, namely 65-72 and 100-110, which do not require approval but do not guarantee the uniqueness of code usage. If it becomes public code, it needs to be approved by RFC;
- (3) The reserved functional code, which is used by certain companies on certain traditional devices, cannot be used for public purposes.

In commonly used public function codes, some of the supported function codes are as follows:

Function code		name	explain	
03	Read Holding Register	Read and hold register	1 represents high level, 0 represents low level.	

(4) Description of supported function codes

03 (0x03) Read hold register

In a remote device, use this function code to read the contents of consecutive blocks in the hold register. The request PDU specifies the starting register address and the number of registers. Address registers from scratch. Therefore, addressing registers 1-16 are 0-15. In the response message, each register has two bytes, with the first byte being the data high bit and the second byte being the data low bit.

Example of function code 03, read input analog quantity, register address 40001:

request			response			
Field Name		hexadecim	Field Name		hexadecimal	
		al				
	Transmissio	01		Transmission	01	
	n	00		identification	00	
	identificatio					
MBAP	n		MBAP			
message	Protocol	00	message header	Protocol Logo	00	
header	Logo	00			00	
	length	00		length	00	
		06			05	
	Unit	01		Unit identifier	01	
	identifier					
Function code		03	Function code		03	
Starting address Hi		00	Byte count		02	
Starting address Lo		00	Register value Hi		00	
Register number Hi		00	Register value Lo		00	
Register number Lo		01				

Register address description for WJ188 (note: addresses are all decimal numbers)

Supports registers with function code 03.

Address 4X	Address (PC,	Data content	attrib	Data Explanation
(PLC)	DCS)		ute	
forty thousand	0	IN0 input analog	read-o	Signed integer, AD converted value.
and one		quantity	nly	0x0000=zero point; 0x7FFF=Full Degree
forty thousand	one	IN1 input analog	read-o	For example, 4-20mA:
and two		quantity	nly	0x0000=4mA;
forty thousand	two	IN2 input analog	read-o	0x7FFF=20mA;
and three		quantity	nly	
forty thousand	three	IN3 input analog	read-o	
and four		quantity	nly	
forty thousand	four	IN4 input analog	read-o	
and five		quantity	nly	
forty thousand	five	IN5 input analog	read-o	
and six		quantity	nly	
forty thousand	six	IN6 input analog	read-o	
and seven		quantity	nly	
forty thousand	seven	IN7 input analog	read-o	
and eight		quantity	nly	
forty thousand	eight	Is IN0 out of range	read-o	Signed integer, 0 represents normal, 1
and nine			nly	represents input signal below zero, and 2
forty thousand	nine	Is IN1 out of range	read-o	represents input signal above full scale.
and ten			nly	

forty thousand	ten	Is IN2 out of range	read-o	
and eleven			nly	
forty thousand	eleven	Is IN3 out of range	read-o	
and twelve			nly	
forty thousand twelve Is IN4 out of range		read-o		
and thirteen			nly	
forty thousand	thirteen	Is IN5 out of range	read-o	
and fourteen			nly	
forty thousand	fourteen	Is IN6 out of range	read-o	
and fifteen			nly	
forty thousand	fifteen	Is IN7 out of range	read-o	
and sixteen			nly	
40017~40018	16~17	IN0 actual	read-o	The data is a 32-bit floating-point number
		engineering value	nly	stored in CDAB order.
40019~40020	18~19	Actual engineering	read-o	It is a value obtained by converting the zero
		value of IN1	nly	point and fullness set by the user on the
40021~40022	20~21	IN2 actual	read-o	webpage. For example, if the input signal
		engineering value	nly	is 4-20mA, representing a temperature of
40023~40024	22~23	IN3 actual	read-o	-20~100 degrees, the zero point can be set to
		engineering value	nly	-20 and the full degree can be set to 100.
40025~40026	24~25	IN4 actual	read-o	After the setting is completed, the actual
		engineering value	nly	engineering value read out is the actual
40027~40028	26~27	IN5 actual	read-o	temperature value. Generally, this value
		engineering value	nly	can be directly used for general applications.
40029~40030	28~29	IN6 actual	read-o	No need to process the data in registers
		engineering value	nly	40001-4008. Note that some PLCs require
40031~40032	30~31	IN7 actual	read-o	swapping of high 16 and low 16 bit SWAPs
		engineering value	nly	to read data.
forty thousand	thirty-two	IN0 actual	read-o	A 16 bit signed integer is a value obtained by
and thirty-three	amty-two	engineering value	nly	converting the zero point and full scale set by
forty thousand	thirty-three	Actual engineering	read-o	the user on the webpage. If using this
and thirty-four	unity-unice	value of IN1	nly	register, be careful not to exceed the range of
forty thousand	thirty-four	IN2 actual	read-o	-32767~32767. If decimals are needed, the
and thirty-five	amry-10ui	engineering value	nly	range can be increased by an appropriate
forty thousand	thirty-five	IN3 actual	read-o	multiple. For example, 4-20mA
and thirty-six	amry-mvc	engineering value	nly	corresponds to 0-100 degrees, and the zero
forty thousand	thirty-six	IN4 actual	read-o	point can be set to 0 and the full degree can
and thirty-seven	umty-SIX	engineering value	nly	be set to 10000 (magnified 100 times) on the
forty thousand	thirty-seven	IN5 actual	read-o	webpage. Therefore, dividing the data read
and thirty-eight	amty-seven	engineering value	nly	by this register by 100 is the actual input
forty thousand	thirty-eight	IN6 actual	read-o	temperature value.
1	umty-eight			1
and thirty-nine		engineering value	nly	

forty thousan	d thirty-nine	IN7 actual	read-o	
and forty		engineering value	nly	
forty thousan	d two hundred and	Module Name	read-o	High bit: 0x01 Low bit: 0x88
two hundred an	d ten		nly	
eleven				

Calibration module:

The product has been calibrated before leaving the factory, and users can use it directly without calibration.

During use, you can also use the product's calibration function to recalibrate the module. When in school, the module needs to input appropriate signals, and different input ranges require different input signals.

To improve calibration accuracy, it is recommended to use the following equipment for calibration:

- 1. A DC voltage/current signal source with stable output and low noise
- 2. A voltage/current measuring instrument with a precision of 5 and a half bits or higher is used to monitor the accuracy of input signals

Calibration process

- 1. Connect the corresponding input signal to the channel that needs to be calibrated according to the input range of the module.
 - The zero point of the WJ188 module is calibrated when the zero point signal is input, and the full degree is calibrated when the full degree signal is input. For example, when inputting 4-20mA, input 4mA for zero calibration and 20mA for full calibration. When inputting 0-5V, input 0V for zero calibration and 5V for full calibration.
- 2. Input zero signal to the channel to be calibrated for WJ188 module, usually 4mA or 0V.
- 3. After the signal stabilizes, send \$01 {"calibrationCHx": 0} (where x ranges from 0 to 7, representing channels 0-7), and the module will perform zero point calibration.
- 4. Input a full current or voltage signal to the channel to be calibrated for the WJ188 module.
- 5. After the signal stabilizes, send \$01 {"calibrationCHx": 1} (where x ranges from 0 to 7, representing channels 0-7), and the module will perform full-scale calibration.
- 6. Calibration completed

Common problems with WJ188

1. Cross network segment issues

If the IP of the device and the communicating PC are not in the same network segment and are directly connected via Ethernet or under the same sub router, then the two cannot communicate at all.

give an example:

Device IP: 192.168.0.7 Subnet mask: 255.255.255.0 PC's IP: 192.168.1.100 Subnet mask: 255.255.255.0

Due to the device's IP being 192.168.0.7, it is unable to log in to the device's webpage or ping it on the PC.

If you want the two to communicate, you need to set the subnet mask of the device and PC, as well as the subnet mask on the router, to 255.255.0.0, so that you can log in to the module webpage.

2. The device can ping, but the webpage cannot be opened

There may be several reasons for this:

1) The device has set a static IP address that conflicts with the IP addresses of existing devices in the network

- 2) The HTTP server port has been modified (default should be 80)
- 3) Other reasons

Solution: Reset the device to an unused IP address; Restore factory settings or enter the correct port when opening the browser.

3. Every once in a while, there is a disconnection and reconnection

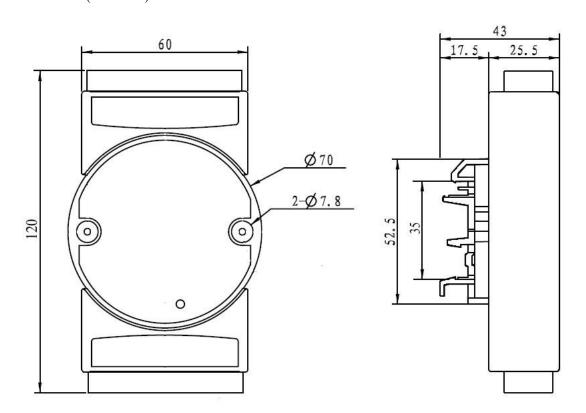
Every once in a while, there will be a phenomenon of disconnection and reconnection

Reason: There is an issue of IP address conflict between the serial server and other devices

4. Communication is abnormal, network connection cannot be established, or search cannot be found

The firewall of the current computer needs to be turned off (in the Windows firewall settings)

Three local ports must not conflict, meaning they must be set to different values. Default values are 23, 26, and 29


Having illegal MAC addresses, such as full FF MAC addresses, may result in inability to connect to the target IP address or duplicate MAC addresses.

Illegal IP addresses, such as network segments that are not in the same network segment as the router, may not be able to access the external network.

5. Hardware problem search

Poor power supply from the power adapter or poor contact of the plug

If the power light and network port light are not on, it means there is no power supply or the hardware is broken Dimensions: (Unit: mm)

Can be installed on standard DIN35 rails

guarantee:

Within two years from the date of sale, if the user complies with the storage, transportation, and usage requirements and the product quality is lower than the technical specifications, it can be returned to the factory for free repair. If

damage is caused due to violation of operating regulations and requirements, device fees and maintenance fees shall be paid.

Copyright:

Copyright © 2024 Shenzhen Weijunrui Technology Co., Ltd.

Without permission, no part of this manual may be copied, distributed, translated, or transmitted. This manual is subject to modification and update without prior notice.

Trademark:

The other trademarks and copyrights mentioned in this manual belong to their respective owners.

Version number: V1.0 Date: June 2024