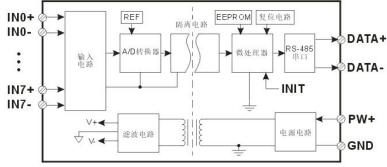


# 8-way NTC thermistor temperature conversion to RS-485/232, data acquisition

# module WJ226

## **Product features:**

- Eight channel NTC temperature acquisition, isolated conversion to RS-485/232 output
- Can be quickly customized and linearized according to the NTC scale table
- Supports various NTC sensors such as 5K/10K/20K/100K
- $\bullet Using a 12 \ bit AD$  converter, the measurement accuracy is better than 0.1%
- •Isolation withstand voltage between signal input/output 1000VDC
- •Wide power supply range: 8~32VDC
- •High reliability, easy programming, and easy application
- Standard DIN35 rail installation, convenient for centralized wiring
- Users can program module addresses, baud rates, etc
- Supports Modbus RTU communication protocol and automatic recognition protocol
- •Industrial flame retardant shell, RS485 port surge protection


### **Typical applications:**

- •NTC temperature signal measurement
- •RS-485 remote I/O, data acquisition
- •Intelligent building control, security engineering and other application systems
- •RS-232/485 bus industrial automation control system
- •Industrial site signal isolation and long-distance transmission
- Equipment operation monitoring
- •Measurement of sensor signals
- Acquisition and recording of industrial field data
- •Development of medical and industrial control products
- •Thermistor signal acquisition

#### **Product Overview:**

The WJ226 product realizes signal acquisition between sensors and hosts, used to detect NTC thermistor temperature signals. The WJ226 series products can be applied in industrial automation control systems with RS-232/485 bus, NTC thermistor temperature signal measurement, industrial field signal isolation, and long-distance transmission, etc.

The product includes power isolation, signal isolation, linearization, A/D conversion, and RS-485 serial communication. Each serial port can connect up to 255 WJ226 series modules, and the communication method adopts ASCII code communication protocol or MODBUS RTU communication protocol. The baud rate can be set by code and can be hung on the same RS-485 bus as control modules from other manufacturers, making it easy for computer programming.





0000000000

diagram 1 WJ226 module appearance diagram



#### Figure 2 Internal Block Diagram of WJ226 Module

The WJ226 series products are intelligent monitoring and control systems based on microcontrollers. All user set calibration values, addresses, baud rates, data formats, parity checks, and other configuration information are stored in non-volatile memory EEPROM.

The WJ226 series products are designed and manufactured according to industrial standards, with isolation between signal inputs/outputs, capable of withstanding 1000VDC isolation voltage, strong anti-interference ability, and high reliability. The working temperature range is -40 °C to+85 °C.

#### **Function Introduction:**

The WJ226 signal isolation acquisition module can be used to measure eight NTC thermistor signals.

1、 Analog signal input

12 bit acquisition accuracy, 8-channel NTC thermistor signal input. All signal input ranges have been calibrated before the product leaves the factory. Users do not need to calibrate.

2, Communication Protocol

Communication interface: 1 standard RS-485 communication interface or 1 standard RS-232 communication interface, please specify when ordering and selecting.

Communication Protocol: Supports two protocols, the character protocol defined by the command set and the MODBUS RTU communication protocol. The module automatically recognizes communication protocols and can achieve network communication with various brands of PLCs, RTUs, or computer monitoring systems.

Data format: 10 digits. 1 start bit, 8 data bits, and 1 stop bit.

The communication address (0-255) and baud rate (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be set; The communication network can reach a maximum distance of 1200 meters and is connected through twisted pair shielded cables.

High anti-interference design of communication interface,  $\pm 15$ KV ESD protection, communication response time less than 100mS.

3, anti-interference

Checksums can be set as needed. There is a transient suppression diode inside the module, which can effectively suppress various surge pulses, protect the module, and the internal digital filter can also effectively suppress power frequency interference from the power grid.

# **Product selection:**

| WJ226 ·         | - Z¤ - T¤ -             |                                 |
|-----------------|-------------------------|---------------------------------|
|                 |                         |                                 |
| Input type: NTC | Temperature<br>range: T | communication interface         |
| NTC1K           | <b>T1: -20-100°</b> C   | 232: Output as RS-232 interface |
| NTC5K           | <b>T2:</b> 0-100°C      | 485: Output as RS-485 interface |
| NTC10K          | <b>T3:</b> 0-150°C      |                                 |
| NTC20K          | <b>T4:</b> 0-200°C      |                                 |
| NTC50K          | <b>T5:</b> 0-400°C      |                                 |
| NTC100K         | Tu: User defined        |                                 |
| Other NTC       |                         |                                 |



Selection Example 1: Model: WJ226-NTC10K-T1-485 indicates Input: NTC10K, Temperature Range: -20~100 °C, Output: RS-485 Selection example 2: Model: WJ226-NTC20K-T4-485 indicates input: NTC20K, temperature range: 0~200 °C, output is RS-485 Selection example 3: Model: WJ226-NTC3K-Tu-232 indicates input: NTC3K, temperature range: 0~50 °C, output is **RS-232 WJ226 General Parameters:** (Typical @+25 °C, Vs is 24VDC) Input type: NTC thermistor input Accuracy: 0.1% Temperature drift:  $\pm$  50 ppm/°C ( $\pm$  100 ppm/°C, maximum) Bandwidth: -3 dB 10 Hz Conversion rate: 5 Sps (factory default value, users can modify the conversion rate by issuing commands.) You can set the AD conversion rate to 2.5 SPS, 5 SPS, 10 SPS, and 20 SPS by sending commands. (Channel conversion rate=AD conversion rate/number of open channels) Note: Please recalibrate the module after modifying the conversion rate, otherwise the measured data may have deviations. You can also specify the conversion rate when placing an order, and we will recalibrate the product according to the conversion rate you require when it leaves the factory. Common mode rejection (CMR): 120 dB (1k Ω Source Imbalance @ 50/60 Hz) Normal mode suppression (NMR): 60 dB (1k  $\Omega$  Source Imbalance (a) 50/60 Hz) Input protection: overvoltage protection, overcurrent protection Communication: RS-485 or RS-232 standard character protocol and MODBUS RTU communication protocol Baud rates (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be selected by software The address (0-255) can be selected by software Communication response time: 100 ms maximum Working power supply:+8~32VDC wide power supply range, with internal anti reverse and overvoltage protection circuits Power consumption: less than 1W Working temperature: -40~+85 °C Working humidity: 10~90% (no condensation) Storage temperature: -40~+85 °C Storage humidity: 10~95% (no condensation) Isolation withstand voltage: 1KVDC between input/output, 1 minute, leakage current 1mA The RS-232/RS-485 output and power supply are grounded together. Surge resistant voltage: 3KVAC, 1.2/50us (peak) Dimensions: 120mm x 70mm x 43mm



## **Pin definition:**

| Pin   | name  | Description                         | Pin     | name | Description                         |
|-------|-------|-------------------------------------|---------|------|-------------------------------------|
| one   | IN5+  | Channel 5 thermistor input positive | eleven  | IN0- | Channel 0 thermistor input negative |
|       |       | terminal                            | eleven  |      | terminal                            |
| two   | IN5-  | Channel 5 thermistor input negative | twelve  | IN0+ | Channel 0 thermistor input positive |
|       |       | terminal                            |         |      | terminal                            |
| three | IN6+  | Channel 6 thermistor input positive | thirtee | IN1- | Channel 1 thermistor input negative |
|       |       | terminal                            | n       |      | terminal                            |
| four  | IN6-  | Channel 6 thermistor input negative | fourte  | IN1+ | Channel 1 thermistor input positive |
| loui  |       | terminal                            | en      |      | terminal                            |
| five  | IN7+  | Channel 7 thermistor input positive | fifteen | IN2- | Channel 2 thermistor input negative |
|       |       | terminal                            | mach    |      | terminal                            |
| six   | IN7-  | Channel 7 thermistor input negative | sixtee  | IN2+ | Channel 2 thermistor input positive |
| 513   |       | terminal                            | n       |      | terminal                            |
| seven | DATA+ | Positive end of RS-485/232 signal   | sevent  | IN3- | Channel 3 thermistor input negative |
| seven |       |                                     | een     |      | terminal                            |
| eight | DATA- | Negative terminal of RS-485/232     | eighte  | IN3+ | Channel 3 thermistor input positive |
|       |       | signal                              | en      |      | terminal                            |
| nine  | PW+   | Positive end of power supply        | ninete  | IN4- | Channel 4 thermistor input negative |
|       |       |                                     | en      |      | terminal                            |
| ten   | GND   | Negative terminal of power supply,  | twenty  | IN4+ | Channel 4 thermistor input positive |
|       |       | digital signal output ground        |         |      | terminal                            |

#### Table 1 Pin Definition

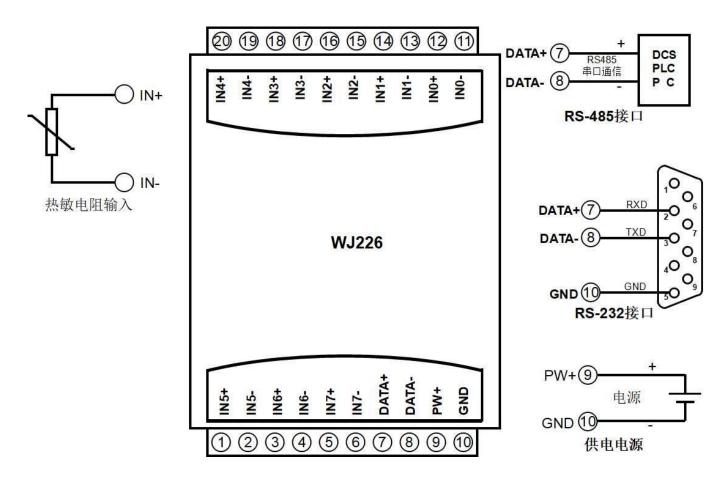





Figure 3 Wiring diagram of WJ226 module

#### WJ226 Character Protocol Command Set:

The factory initial settings of the module are as follows:

The address code is 01

Baud rate 9600 bps

#### No verification

If using an RS-485 network, a unique address code must be assigned, with a hexadecimal value between 00 and FF. Since the address codes of new modules are the same, their addresses will conflict with those of other modules. Therefore, when building the system, you must reconfigure the addresses of each WJ226 module. After connecting the power line and RS485 communication line of the WJ226 module, the address of the WJ226 module can be modified through configuration commands. The baud rate and parity check also need to be adjusted according to the user's requirements.

#### Method to put the module into default state:

There is an Initiat switch located on the side of the WJ226 module. Turn the Initiat switch to the Initiat position, then turn on the power, and the module will enter the default state. In this state, the configuration of the module is as follows:

The address code is 00

Baud rate 9600 bps

No verification

When unsure of the specific configuration of a module, you can also turn the Initiat switch to the Initiat position, then turn on the power to put the module into default mode, and then reconfigure the module.

The character protocol command consists of a series of characters, such as the prefix, address ID, and variables.

- Note: In some cases, many commands use the same command format. To ensure that the address you are using is correct in a command, if you use the wrong address that represents another module, the command will take effect in that module, resulting in an error.
  - 2. Commands must be entered in uppercase letters.

#### 1. Read measurement data command

Explanation: Read back the temperature values of all channel NTC from the module.

Command format: # 01

Parameter description: # delimiter. Hexadecimal is 23H

01 module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to

hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H

Response format: The>(data) (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation.

Parameter description:>delimiter. Hexadecimal is 3EH

(data) represents the retrieved data. Users can issue commands to modify the zero and full values of the data as needed, and the modified data will be converted based on the new zero and full values.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.



If a channel has been closed, the read data will be displayed as space characters.

If the serial communication software you are using cannot input the enter key character, please switch to hexadecimal format for communication.

Application example: User command (character format) # 01

Module

#### response

(character

format)>+012.00+016.00+16.000+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016.00+016

Explanation: The input for address 01H module is (data format is engineering unit):

Channel 0:+12 degrees Channel 1:+16 degrees Channel 2:+16 degrees Channel 3:+16 degrees

Channel 4:+16 degrees Channel 5:+16 degrees Channel 6:+16 degrees Channel 7:+18.16 degrees

| 目口选择/COM<br>COM1 ▼<br>友特率选择/Baud     | ) [打开串口/0pe            | A 关闭串口/Close                              |    | - 设置配置<br>- 模块地址/ID 数据格式<br>01 工程単位 |        |
|--------------------------------------|------------------------|-------------------------------------------|----|-------------------------------------|--------|
| 9600 ▼<br>王这里输入字符命令/C∞<br><b>¥01</b> |                        | <sub>认的命令/Has</sub> sent<br><b> 输入的命令</b> |    | 波特率(需安装配置跳线)<br>9600 ▼<br>- 设置协议    | 设置/Set |
| 7 <b>01</b><br>发送命令/Send             | 自动发送<br>/Continue send |                                           | mS | <ul> <li>□ (</li></ul>              | 设置/Set |
| 停止发送/Stop                            | 另存为/Save to<br>file    |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |
|                                      |                        |                                           |    |                                     |        |

Enter **# 01** and click send command.

| On                    | the           | received           | data                     | line,        | it | will |
|-----------------------|---------------|--------------------|--------------------------|--------------|----|------|
| display>+0.0000+0.000 | 0+0.0000+0.00 | 00+0.0000+0.0000+0 | .0000+ <b>0.0000+0</b> . | .0000+0.0000 |    |      |

#### 2. Read channel N analog input module data command

Explanation: Retrieve the temperature value of NTC for channel N from the module.

#### Command format: # 010

Parameter description: # delimiter.

**01** module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Channel code 0-7, hexadecimal 30H~37H

Response format: The>(data) (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation or channel is closed.

Parameter description:>delimiter.

(data) represents the read back data of channel N. Users can issue commands to modify the zero and full values of the data as needed, and the modified data will be converted based on the new zero and full values.

(cr) End symbol, enter key on the upper computer (0DH).

Other instructions: If there is a syntax error, communication error, or if the address does not exist, the module will not



respond.

Application example: User command (character format) # 010

Module response (character format)>-018.00 (cr)

Explanation: The input for channel 0 on address 01H module is -18 degrees

#### 3. Configure WJ226 module command

Explanation: Set the address, baud rate, and parity for a WJ226 module. The configuration information is stored in non-volatile memory EEPROM.

Command format:% AANNTTCCFF

Parameter description:% delimiter.

AA module address, with a value range of 00 to FF (hexadecimal).

NN represents the new module hexadecimal address, with values ranging from 00 to FF.

TT uses hexadecimal to represent type encoding. The WJ226 product must be set to 00.

CC uses hexadecimal to represent baud rate encoding.

| Baud rate code | Baud rate  |
|----------------|------------|
| 04             | 2400 baud  |
| 05             | 4800 baud  |
| 06             | 9600 baud  |
| 07             | 19200 baud |
| 08             | 38400 baud |
| 09             | 57600 baud |

Table 2 Baud rate codes

FF uses 8 bits in hexadecimal to represent parity check.

00: No verification

10: Odd verification

20: Even verification

Response format:! The AA (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation, or a configuration jumper is not installed before changing the baud rate or checksum.

Parameter description:! The delimiter indicates that the command is valid.

The delimiter indicates that the command is invalid.

AA represents the input module address

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If you are configuring the module for the first time, AA=00, NN equals the new address.

If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.

Application example: User command% 0011000600

Module response! 11(cr)

?

Explanation:% delimiter.

00 means that the original address of the WJ226 module you want to configure is 00H.

**11** indicates that the new module's hexadecimal address is 11H.

**00** type code, WJ226 product must be set to 00.



06 represents a baud rate of 9600 baud.

**00** indicates no verification.

#### 4. Read configuration status command

Explanation: Read configuration for a specified WJ226 module.

- Command format: \$012
- Parameter description: \$delimiter.

01 module address, with a value range of 00 to FF (hexadecimal).

2 represents the command to read the configuration status

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! The AATTCCFF (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation.

Parameter description:! Boundary symbol.

AA represents the input module address.

TT stands for type code.

CC stands for baud rate encoding. See Table 2

**FF** is shown in Table 3

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.

Application example: User command **\$012** 

Module response! 01000600(cr)

Explanation:! Boundary symbol.

**01** indicates that the WJ226 module address is 01H.

**00** default value.

06 represents a baud rate of 9600 baud.

**00** indicates that checksum is prohibited.

#### 5. Set module AD conversion rate

- Description: Set the AD conversion rate of the module. Among them, channel conversion rate=AD conversion rate/number of opened channels. The slower the sampling rate, the more accurate the data collected. Users can adjust it according to their needs. The default conversion rate at the factory is 10SPS.
- Note: Please recalibrate the module after modifying the conversion rate, otherwise the measured data may have deviations. You can also specify the conversion rate when placing an order, and we will recalibrate the product according to the conversion rate you require when it leaves the factory.

Command format: **\$AA3R** 

Parameter description: \$delimiter.

AA module address, with a value range of 00 to FF (hexadecimal).

**3** represents the command to set conversion rate

**R** conversion rate code, which can range from 0 to 3

| Code R   | 0        | one   | two     | three   |  |  |  |
|----------|----------|-------|---------|---------|--|--|--|
| Conversi | 2.5 SPS  | 5 SPS | 10 SPS  | 20 SPS  |  |  |  |
| on rate  | 2.5 51 5 | 5515  | 10 51 5 | 20 51 5 |  |  |  |

Response format:! The AA (cr) command is valid.

? Invalid or illegal operation of AA (cr) command



?

Parameter description:! The delimiter indicates that the command is valid.

The delimiter indicates that the command is invalid.

AA represents the input module address.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.

Application example 1: User command **\$0032** 

Module response! 00 (cr)

Explanation: Set the AD conversion rate to 10SPS.

Application example 2: User command **\$0033** 

Module response! 00 (cr)

Explanation: Set the AD conversion rate to 20SPS.

#### 6. Read module AD conversion rate

Explanation: Read the AD conversion rate of the module. Among them, channel conversion rate=AD conversion rate/number of opened channels. The slower the sampling rate, the more accurate the data collected.

Command format: \$AA4

?

Parameter description: \$delimiter.

AA module address, with a value range of 00 to FF (hexadecimal).

4 represents the read conversion rate command

Response syntax:! The AAR (cr) command is valid.

? Invalid or illegal operation of AA (cr) command

Parameter description:! The delimiter indicates that the command is valid.

The delimiter indicates that the command is invalid.

AA represents the input module address.

**R** conversion rate code, which can range from 0 to 3

| Code R   | 0        | one   | two     | three   |  |  |  |
|----------|----------|-------|---------|---------|--|--|--|
| Conversi | 2.5 SPS  | 5 SPS | 10 SPS  | 20 SPS  |  |  |  |
| on rate  | 2.5 51 5 | 5515  | 10 51 5 | 20 51 5 |  |  |  |

(cr) End symbol, enter key on the upper computer (0DH).

Other instructions: If there is a syntax error, communication error, or if the address does not exist, the module will not respond.

Application example 1: User command **\$004** 

Module response! 002 (cr)

Explanation: The current AD conversion rate is 10SPS.

Application Example 2: User Command \$004

Module response! 003 (cr)

Explanation: The current AD conversion rate is 20SPS.

#### 7. Reset all parameters set by the above character command to factory settings.

Explanation: The parameters set by the module using the above character commands are restored to factory settings. Command format: **\$AA900** Set parameters to factory settings.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Response format:! AA (cr) indicates successful setup, and the module will automatically restart.



Application example: User command (character format) **\$01900** 

Module response (character format)! 01(cr)

Explanation: Parameters are reset to factory settings.

#### Modbus RTU communication protocol:

The factory initial settings of the module are as follows:

## The Modbus address is 01

#### Baud rate 9600 bps

#### Method to put the module into default state:

There is an Initiat switch located on the side of the WJ226 module. Turn the Initiat switch to the Initiat position, then turn on the power, and the module will enter the default state. In this state, the module temporarily returns to its default state: address 01, baud rate 9600. When unsure of the specific configuration of a module, users can query the address and baud rate registers 40201-40202 to obtain the actual address and baud rate of the module, or modify the address and baud rate as needed.

# Note: Please turn the Initiat switch to the NORMAL position during normal use.

Supports Modbus RTU communication protocol **function codes 03** (read hold register), **06** (write single register), and **16** (write multiple registers), with command formats following the standard Modbus RTU communication protocol. Modbus software testing example:

| = IndScan32 - IndScal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| File Connection Setup View Mindow Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |           |
| = IodScal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | X         |
| Address:     0001     Device Id:     1       Address:     0001     MODBUS Point Type     Number of Polls: 62       Length:     10     03: HOLDING REGISTER <ul> <li>Reset Ctrs</li> <li>Reset Ctrs</li> </ul> <ul> <li>Reset Ctrs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |
| 40001: <3EOCH><br>40002: <3BOCH><br>40003: <3BOCH><br>40004: <3BOCH><br>40005: <3BOCH><br>40005: <3BOCH><br>40005: <3BOCH><br>40007: <3BOCH><br>40008: |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |           |
| For Help, press Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polls: 63 | Resps: 62 |

Supports registers with function codes 03, 06, and 16, and the addresses in the table are decimal numbers. 32-bit long integers and floating-point numbers with the lower 16 bits in front.

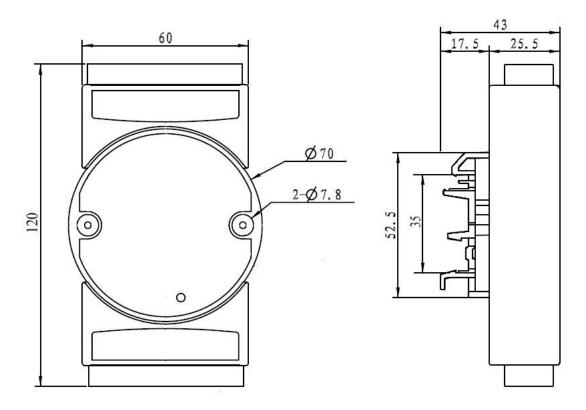
| Address 4X     | Address (PC, DCS) | Data content    | attri | Data Explanation                           |
|----------------|-------------------|-----------------|-------|--------------------------------------------|
| (PLC)          |                   |                 | bute  |                                            |
| forty thousand | 0                 | IN0 temperature | read- |                                            |
| and one        |                   | value           | only  | Signed integers, temperature data for      |
| forty thousand | one               | IN1 temperature | read- | channels IN0~IN7,                          |
| and two        |                   | value           | only  | Divide the data by 10 to obtain the actual |
| forty thousand | two               | IN2 temperature | read- | temperature.                               |
| and three      |                   | value           | only  | For example, reading 1005 indicates a      |
| forty thousand | three             | IN3 temperature | read- | temperature of 100.5 degrees               |
| and four       |                   | value           | only  |                                            |



| TECHNOL         | .001                 |                 | Digni | u Isolulors & Conditioners                     |
|-----------------|----------------------|-----------------|-------|------------------------------------------------|
| forty thousand  | four                 | IN4 temperature | read- |                                                |
| and five        |                      | value           | only  |                                                |
| forty thousand  | five                 | IN5 temperature | read- |                                                |
| and six         |                      | value           | only  |                                                |
| forty thousand  | six                  | IN6 temperature | read- |                                                |
| and seven       |                      | value           | only  |                                                |
| forty thousand  | seven                | IN7 temperature | read- |                                                |
| and eight       |                      | value           | only  |                                                |
|                 |                      |                 |       |                                                |
| 40061~40062     | 60~61                | IN0 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
| 40063~40064     | 62~63                | IN1 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
| 40065~40066     | 64~65                | IN2 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
| 40067~40068     | 66~67                | IN3 temperature | read- | 32-bit floating-point number, temperature      |
|                 |                      | value           | only  | data for channels IN0~IN7.                     |
| 40069~40070     | 68~69                | IN4 temperature | read- | The data read from this register is the actual |
|                 |                      | value           | only  | temperature value.                             |
| 40071~40072     | 70~71                | IN5 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
| 40073~40074     | 72~73                | IN6 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
| 40075~40076     | 74~75                | IN7 temperature | read- |                                                |
|                 |                      | value           | only  |                                                |
|                 |                      |                 |       |                                                |
| forty thousand  | two hundred          | Module address  | Read/ | Integer, effective after restart, range        |
| two hundred and |                      |                 | Write | 0x0000-0x00FF                                  |
| one             |                      |                 |       |                                                |
| forty thousand  | two hundred and      | Baud rate       | Read/ | Integer, effective after restart, range        |
| two hundred and | one                  |                 | Write | 0x0004-0x000A                                  |
| two             |                      |                 |       | 0x0004 = 2400  bps, 0x0005 = 4800  bps         |
|                 |                      |                 |       | 0x0006 = 9600  bps, 0x0007 = 19200  bps        |
|                 |                      |                 |       | 0x0008 = 38400 bps, $0x0009 = 57600$ bps       |
|                 |                      |                 |       | 0x000A = 115200bps                             |
| forty thousand  | two hundred and      | Parity check    | Read/ | Integer, takes effect after restart            |
| two hundred and | two                  | -               | Write | 0: No verification                             |
| three           |                      |                 |       | 1: Odd verification                            |
|                 |                      |                 |       | 2: Even verification                           |
| forty thousand  | two hundred and      | Conversion rate | Read/ | Integer, range 0x0000-0x0003,                  |
| two hundred and | three                |                 | Write | The factory default is 1. Please recalibrate   |
| four            |                      |                 |       | the module after modification.                 |
|                 |                      |                 |       | 0x0000 = 2.5 SPS, $0x0001 = 5$ SPS,            |
|                 |                      |                 |       | 0x0002 = 10 SPS, $0x0003 = 20$ SPS             |
| forty thousand  | two hundred and ten  | Module Name     | read- | High bit: 0x02 Low bit: 0x26                   |
| iony mousailu   | two numerou and tell |                 | 10au- |                                                |



| two hundred and |  | only |  |
|-----------------|--|------|--|
| eleven          |  |      |  |


**Communication example 1:** If the module address is 01, sending in hexadecimal: 01 03 00 00 01 84 0A can retrieve the data from register 40001.

| 01      | 03            | 00               | 00               | 00                | 01           | eighty-four   | 0A             |
|---------|---------------|------------------|------------------|-------------------|--------------|---------------|----------------|
| Module  | Read and hold | Register Address | Low bit register | Register quantity | Low register | CRC check low | CRC check high |
| address | register      | High Bit         | address          | high              | quantity     | bit           | bit            |

If the module replies: **01 03 02 01 2C B8 09**, the read data is 0x012C, which is converted to 300 in decimal and divided by 10 to 30, it indicates that the current input temperature is 30 degrees.

| 01      | 03            | 02                | 01        | 2C       | B8                | 09                 |
|---------|---------------|-------------------|-----------|----------|-------------------|--------------------|
| Module  | Read and hold | The number of     | data-high | data-low | CRC check low bit | CRC check high bit |
| address | register      | bytes in the data |           |          |                   |                    |

**Dimensions: (Unit: mm)** 



Can be installed on standard DIN35 rails

#### **Communication testing software:**

After receiving the product, users can contact sales personnel and provide their QQ number or email address to receive the WAYJUN Test software. This testing software is used for communication testing between computers and WJ226 products. You can also download it from the website softwayjun.net.

#### guarantee:

Within two years from the date of sale, if the user complies with the storage, transportation, and usage requirements



and the product quality is lower than the technical specifications, it can be returned to the factory for free repair. If damage is caused due to violation of operating regulations and requirements, device fees and maintenance fees shall be paid.

# **Copyright:**

Copyright © 2023 Shenzhen Weijunrui Technology Co., Ltd.

Without permission, no part of this manual may be copied, distributed, translated, or transmitted. This manual is subject to modification and update without prior notice.

#### Trademark:

The other trademarks and copyrights mentioned in this manual belong to their respective owners.

Version number: V1.0 Date: December 2023