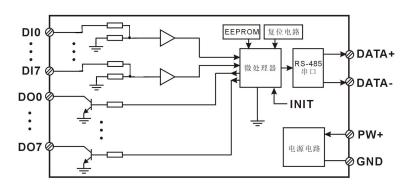


8-way DI high-speed counter, 8-way DO supports PWM output, Modbus RTU

module WJ63

Product features:

- 8 switch inputs, 8 switch outputs
- •Each DI channel can be used as a counter or frequency measurement
- Each DO channel can independently output PWM signals
- •Both DI and DO support PNP and NPN switching functions
- The count value can be read through the RS-485/232 interface
- Supports setting PWM output for RS-485/232 interface
- •Wide power supply range: 8~32VDC
- •High reliability, easy programming, and easy application
- •Standard DIN35 rail installation, convenient for centralized wiring
- Users can program module addresses, baud rates, etc
- Supports Modbus RTU communication protocol and automatic recognition protocol
- •Low cost, small volume modular design
- Dimensions: 120mm x 70mm x 43mm


Typical applications:

- Measurement of proximity switch pulse signal
- Flow meter pulse counting or flow measurement
- Production line product counting
- Counting the number of logistics packages
- •LED lighting control or motor control
- External counter for industrial control computer
- •Intelligent factory and industrial Internet of Things
- Measurement of Pulse Sensor Signal
- Industrial camera status monitoring and control

Product Overview:

The WJ63 product realizes signal acquisition between sensors and hosts, used for pulse signal counting and equipment control. The WJ63 series products can be applied in industrial automation control systems with RS-232/485 bus, photoelectric switch signal counting and measurement, PWM signal output and frequency measurement, etc.

The product includes signal isolation, pulse signal capture, signal conversion, and RS-485 serial communication. Each serial port can connect up to 255 WJ63 series modules, and the communication method adopts ASCII code communication protocol or MODBUS RTU communication protocol. The baud rate can be set by code and can be hung on the same RS-485 bus as control modules from other manufacturers, making it easy for computer programming.

WJ63 module appearance diagram

Figure 2 Internal Block Diagram of WJ63 Module

The WJ63 series products are intelligent monitoring and control systems based on microcontrollers. All user set configuration information such as address, baud rate, data format, checksum status, etc. are stored in non-volatile memory EEPROM.

The WJ63 series products are designed and manufactured according to industrial standards, with strong anti-interference ability and high reliability. The working temperature range is -45 °C to+85 °C.

Function Introduction:

The WJ63 remote I/O module can be used to measure eight switch signals and has eight switch outputs. Can be used as an 8-channel counter or 8-channel frequency measurement,

It can also output 8 PWM signals.

1. Switching signal input and output

8-channel switch signal input, capable of connecting dry and wet contacts. Please refer to the wiring diagram for details; 8-channel switch signal output with open collector output, or internal pull-up output.

2. Communication Protocol

Communication interface: 1 standard RS-485 communication interface or 1 standard RS-232 communication interface, please specify when ordering and selecting.

Communication Protocol: Supports two protocols, the character protocol defined by the command set and the MODBUS RTU communication protocol. The module automatically recognizes communication protocols and can achieve network communication with various brands of PLCs, RTUs, or computer monitoring systems.

Data format: 10 digits. 1 start bit, 8 data bits, and 1 stop bit.

The communication address (0-255) and baud rate (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be set; The communication network can reach a maximum distance of 1200 meters and is connected through twisted pair shielded cables.

High anti-interference design of communication interface, \pm 15KV ESD protection, communication response time less than 100mS.

3, anti-interference

Checksums can be set as needed. There is a transient suppression diode inside the module, which can effectively suppress various surge pulses, protect the module, and the internal digital filter can also effectively suppress power frequency interference from the power grid.

E-mail: sales@wayjun.cn

Product selection:

WJ63 - □ Communication interface

485: Output as RS-485 interface **232**: Output as RS-232 interface

Selection Example 1: Model: **WJ63-232** indicates an output of RS-232 interface Selection Example 2: Model: **WJ63-485** indicates output as RS-485 interface

WJ63 General Parameters:

(Typical @+25 °C, Vs is 24VDC)

Input type: switch input, 8 channels (DI0~DI7).

Low level: Input<1V High level: Input 3.5~30V

Frequency range 0-20KHz Counting range 0-0xFFFFFFF

Input resistance: $30K \Omega$

Output type: open collector output, voltage 0~30V, maximum load current 30mA, 8 channels (DO0~DO7).

To achieve a level output, an internal pull-up resistor with a resistance of 3K ohms can be turned on.

PWM frequency 1~65535Hz, duty cycle 0%~100%

Communication: RS-485 or RS-232 standard character protocol and MODBUS RTU communication protocol

Baud rates (2400, 4800, 9600, 19200, 38400, 57600, 115200bps) can be selected by software

The address (0-255) can be selected by software

Communication response time: 100 ms maximum

Working power supply:+8~32VDC wide power supply range, with internal anti reverse and overvoltage protection

circuits

Power consumption: less than 0.5W Working temperature: -45~+80 °C

Working humidity: 10~90% (no condensation)

Storage temperature: -45~+80 °C

Storage humidity: 10~95% (no condensation) Dimensions: 120mm x 70mm x 43mm

Pin definition:

Pin	name	Description	Pin	name	Description
1 111		•	1 111		-
one	DO7	Channel 7 switch signal output	eleven	DO1	Channel 1 switch signal output
		terminal			terminal
tryo	DO6	Channel 6 switch signal output	twelve	DO0	Channel 0 switch signal output
two		terminal	tweive		terminal
three	DO5	Channel 5 switch signal output	thirtee	DI0	Channel 0 switch signal input
tiiree		terminal	n		terminal
four	DO4	Channel 4 switch signal output	fourte	DI1	Channel 1 switch signal input
Ioui		terminal	en		terminal
five	DO3	Channel 3 switch signal output	fifteen	DI2	Channel 2 switch signal input
live		terminal	IIIteen		terminal
six	DO2	Channel 2 switch signal output	sixtee	DI3	Channel 3 switch signal input
SIX		terminal	n		terminal
GOVON	DATA+	RS-485 signal positive terminal	sevent	DI4	Channel 4 switch signal input
seven			een		terminal
aigh4	DATA-	RS-485 signal negative terminal	eighte	DI5	Channel 5 switch signal input
eight			en		terminal
nine	PW+	Positive end of power supply	ninete	DI6	Channel 6 switch signal input
mne			en		terminal
ton	GND	Negative terminal of power supply,	twonty	DI7	Channel 7 switch signal input
ten		signal ground	twenty		terminal

Table 1 Pin Definition

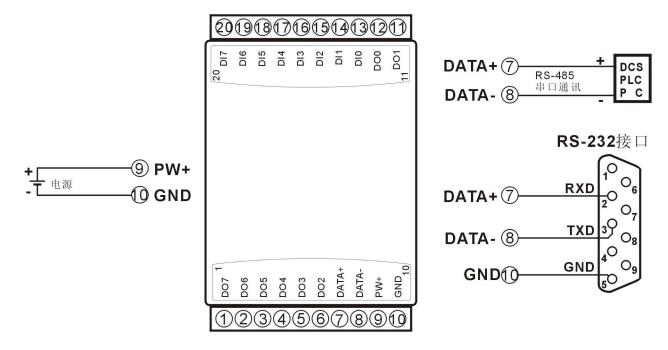
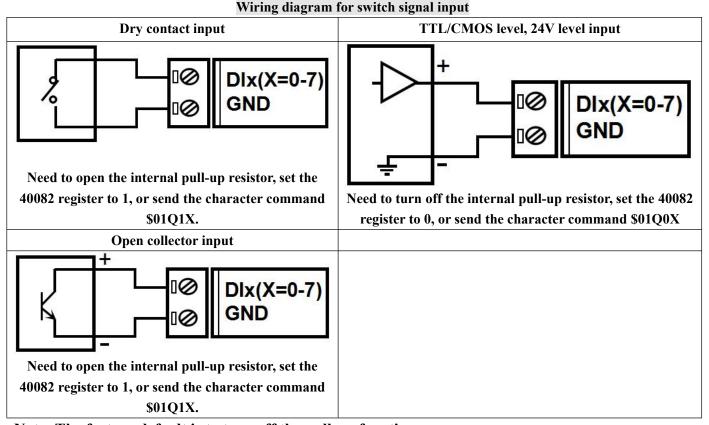
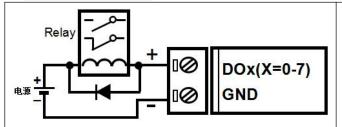



Figure 3 Wiring diagram of WJ63 module



Note: The factory default is to turn off the pull-up function

Wiring diagram for switch signal output

6 6	,
Drive relay (NPN)	Level output (NPN with internal pull-up)

External power supply can be selected from 5~30VDC It can also be a power source that supplies power to the module

The working current of the transistor is less than 30mA Need to turn off the internal pull-up resistor, set the 40083 register to 0, or send the character command \$01QX0

Output high level equal to power supply voltage Need to open the internal pull-up resistor, set the 40083 register to 1, or send the character command \$01QX1.

Note: The factory default is to turn off the pull-up function

WJ63 Character Protocol Command Set:

The factory initial settings of the module are as follows:

The address code is 01

Baud rate 9600 bps

Prohibition of checksum verification

If using an RS-485 network, a unique address code must be assigned, which is a hexadecimal number between 00 and FF. Since the address codes of new modules are the same, their addresses will conflict with other modules. Therefore, when building the system, you must reconfigure the addresses of each WJ63 module. After connecting the power line and RS485 communication line of the WJ63 module, the address of the WJ63 module can be modified through configuration commands. The baud rate and checksum status also need to be adjusted according to the user's requirements. Before modifying the baud rate and checksum status, the module must first enter the default state, otherwise it cannot be modified.

Method to put the module into default state:

There is an Initiate switch located on the side of the WJ63 module. Turn the Initiat switch to the Initiat position, then turn on the power, and the module will enter the default state. In this state, the configuration of the module is as follows:

The address code is 00

Baud rate 9600 bps

Prohibition of checksum verification

At this point, the baud rate, checksum status, and other parameters of the WJ63 module can be modified through configuration commands. When unsure of the specific configuration of a module, the Initiat switch can also be turned to the Initiat position to put the module into default mode, and then the module can be reconfigured.

Note: Please turn the Initiat switch to the NORMAL position during normal use.

The character protocol command consists of a series of characters, such as the prefix, address ID, variables, optional checksum bytes, and a command terminator (cr) used to display the command. The host only commands one WJ63 module at a time, except for synchronous commands with wildcard address "* *".

Command format: (Leading Code) (Addr) (Command) [data] [checksummary] (cr)

The **leading code** is the first letter in the command. All commands require a command prefix, such as%, \$, #, @ Wait. **1-character**

E-mail: sales@wayjun.cn

The address code of the (Addr) module, if not specified below, ranges from 00 to FF (hexadecimal). 2-character (Command) displays command code or variable values. Variable length

[data] Some data required for output commands. Variable length

The **Checksum** in parentheses is an optional parameter that is only required when checksum is enabled. **2-character** (cr) is a control code symbol used for recognition, and (cr) serves as the carriage return terminator with a value of 0x0D. **1-character**

When checksum is enabled, [Checksum] is required. It occupies 2 characters. Both commands and responses must be accompanied by checksum features. The checksum is used to check all input commands to help you detect errors in host to module commands and module to host responses. The checksum character is placed after the command or response character and before the carriage return.

Calculation method: Two characters, hexadecimal number, which is the sum of the ASCII code values of all the characters previously sent, and then combined with the hexadecimal number 0xFF to obtain the result.

Application example: Prohibit checksum

User command \$002 (cr)

Module response! 00020600 (cr)

Enable checksum

User command \$002B6 (cr)

Module response! 00020600 A9 (cr)

```
'$' = 0x24 '0' = 0x30 '2' = 0x32
```

B6=(0x24+0x30+0x30+0x32) AND 0xFF

'!' = 0x21 '0' = 0x30 '2' = 0x32 '6' = 0x36

A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

Response to Command:

The response information depends on various commands. The response also consists of several characters, including the initial code, variables, and ending identifier. There are two types of initial codes for response signals, '!' Or '>' represents a valid command while '!' It represents invalidity. By checking the response information, it is possible to monitor whether the command is valid

Note: In some cases, many commands use the same command format. To ensure that the address you are using is correct in a command, if you use the wrong address that represents another module, the command will take effect in that module, resulting in an error.

- 2. Commands must be entered in uppercase letters.
- 3. (cr) represents the Enter key on the keyboard, do not write it directly, it should be typed with the Enter key.

1. Read switch status command

Description: Read back all output channel switch status, switch reset status, and input channel switch status from the module.

Command format: # AA (cr)

Parameter description: # delimiter. Hexadecimal is 23H

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:>AAAAAAA, BBBBBBB, CCCCCCC (cr) command is valid.

? The **01** (cr) command is invalid or an illegal operation.

Parameter description:>delimiter. Hexadecimal is 3EH

AAAAAAA represents the read output switch status, consisting of 8 numbers arranged in the order of DO7~DO0,

Value 0: Output transistor disconnected; Value 1: Output transistor connected

BBBBB represents the read reset output switch status, consisting of 8 numbers arranged in the order of DO7~DO0.

Value 0: Output transistor disconnected; Value 1: Output transistor connected

CCCCCCC represents the read input switch status, consisting of 8 numbers arranged in the order of DI7~DI0,

Value 0: Input low level; Value 1: Input high level

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Application example: User command (character format) # 01 (cr)

Module response (character format)>0001100000011000000111 (cr)

Explanation: The module output switch status is 00011000, arranged in the order of DO7~DO0

Channel 0: transistor disconnected Channel 1: transistor disconnected Channel 2: transistor disconnected

Channel 3: transistor connected

Channel 4: transistor connected Channel 5: transistor disconnected Channel 6: transistor disconnected

Channel 7: transistor disconnected

After resetting the module, the output switch status is 00001010, arranged in the order of DO7~DO0

Channel 0: transistor disconnected Channel 1: transistor connected Channel 2: transistor disconnected

Channel 3: transistor connected

Channel 4: transistor disconnection Channel 5: transistor disconnection Channel 6: transistor disconnection

Channel 7: transistor disconnection

The input switch status of the module is 00000 111, and the arrangement order is DI7~DI0

Channel 0: High Level Channel 1: High Level Channel 2: High Level Channel 3: Low Level

Channel 4: Low Level Channel 5: Low Level Channel 6: Low Level Channel 7: Low Level

2. Set transistor output command

Description: Set the status of all output channel transistors. The factory setting for all channels is 00000000.

Command format: # AA1ABCD (cr)

Parameter description: # delimiter. Hexadecimal is 24H

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

E-mail: sales@wayjun.cn

1 represents setting the transistor output command

AB channel selection, can choose all output channels or a single output channel.

Set output: Setting AB to 00 means setting all output channels. If setting a single channel, character A must be set to 1, and character B can be set to 0-7, representing 8 transistor DO output channels.

Set reset output: Setting AB to FF means setting the reset output values for all channels. If setting the reset output for a single channel, character A must be set to E, and character B can be set to 0-7, representing 8 transistor DO output channels.

CD output value.

1, If it is set for all channels (AB=00 or AB=FF)

Then there are two

hexadecimal numbers, as shown in the figure on the right

	(I)	
DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0

C represents channels 7 to 4

D represents channels 3 to 0

Bit value is 0:

Set the output transistor to disconnect

Bit value is 1:

Set the output transistor to turn on

2, If it is set for a single channel (AB=1X or AB=EX, where X represents the channel to be set), it can only be set to 00 or 01,

00: Set the X-channel output transistor to disconnect

01: Set the X-channel output transistor to turn on

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! The 01 (cr) command is valid.

? The **01** (cr) command is invalid or an illegal operation.

Application example 1: User command (character format) # 011000F (cr)

Module response (character format)! 01(cr)

Explanation: Set the output of all channels (AB=00) to 0FH, and convert it to binary to 0000 1111,

So the switch state output by the module is:

Channel 0: transistor connected Channel 1: transistor connected Channel 2: transistor connected Channel 3: transistor connected

Channel 4: transistor disconnection Channel 5: transistor disconnection Channel 6: transistor disconnection Channel 7: transistor disconnection

Application example 2: User command (character format) # 0111201 (cr)

Module response (character format)! 01(cr)

Explanation: Set the transistor of channel 2 to be connected.

Application Example 3: User Command (Character Format) # 011FFFF (cr)

Module response (character format)! 01(cr)

Explanation: Set the reset output of all channels (AB=FF) to FFH, which is converted to binary as 1111 1111,

After the module is reset, all channel transistors are turned on.

3. Read counter data command

Explanation: Reading the data of the counter can read all channels or a single channel.

Command format: # AA2 (cr)

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

 ${f 2}$ represents the command to read counter data from channels 0 to 7.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

AAAA, AAAAAAAAA, AAAAAAAAA(cr)

Command format: # AA2N (cr)

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

E-mail: sales@wayjun.cn

2 Indicates the command to read counter data.

N represents the command to read channel N counter data.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AAAAAAAA(cr)

Application example 1: User command (character format) # 012 (cr)

Module response (character format)! 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678,

0012345678, 0012345678 (cr)

Explanation: The count value for all channels is 12345678.

Application example 2: User command (character format) # 0120 (cr)

Module response (character format)! 0012345678(cr)

Explanation: The count value for channel 0 is 12345678.

4. Read input frequency command

Explanation: The frequency of the input can be read for all channels or for a single channel.

Command format: # AA3

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

3 represents the input frequency command for channels 0 to 7.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response

format:!

Command format: # AA3N Read Channel N Input Frequency

AA module address, with a value range of 00 to FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

3 Indicates the command for reading input frequency.

N represents the frequency command for reading channel N.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AAAAAA.AA (cr)

Application example 1: User command (character format) # 013 (cr)

001000.00,001000.00(cr)

Explanation: The input frequency value for all channels is 1KHz.

Application example 2: User command (character format) # 0130 (cr)

Module response (character format)! 001000.00(cr)

Explanation: The input frequency value for channel 0 is 1KHz.

5. Read and output PWM commands

Explanation: Reading the output PWM can read all channels, single channels, and reset PWM values.

Command format: # AA4 (cr) Read PWM values for channels 0 to 7

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

E-mail: sales@wayjun.cn

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format: AAA.AA, AAA, AAA.AA, AAA, AAA.AA, AAA.AA, AAA, AAA.AA, AAA, AAA.AA, AAA, AAA

Command format: # AA4S (cr) Read Channel 0~Channel 7 Reset PWM Value

Response format:! AAA.AA, AAA, A

Command format: # AA4N (cr) Read PWM value of channel N

Response format:! AAA.AA (cr)

Command format: # AA4SN (cr) Read the reset PWM value of channel N

Response format:! AAA.AA (cr)

Application example 1: User command (character format) # 014 (cr)

Module response (character format)! 050.00,050.00,050.00,050.00,050.00,050.00,050.00,050.00(cr)

Explanation: The PWM value for all channels is 50%.

Application example 2: User command (character format) # 0140 (cr)

Module response (character format)! 050.00(cr)

Explanation: The PWM value for channel 0 is 50%.

6. Set PWM command

Explanation: Setting the output PWM value or resetting the PWM value can only be set for a single channel. The factory setting for all channels is 050.00.

Command format: # AA5NAAA AA (cr) sets the PWM value for channel N

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

N-channel, with a value range of 0-7.

AAA.AA sets the output PWM value within the range of 000.00~100.00

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setting

Command format: # 015SNAAA AA (cr) sets the reset PWM value for channel N

Response format:! AAcr) indicates successful setting

Application example 1: User command (character format) # 0150050.00 (cr)

Module response (character format)! 01(cr)

Explanation: Set the PWM value for channel 0 to 50%.

Application Example 2: User Command (Character Format) # 015S0050.00 (cr)

Module response (character format)! 01(cr)

Explanation: Set the reset PWM value for channel 0 to 50%.

7. Read the frequency command of PWM

Explanation: Read the output PWM frequency and also read the reset PWM frequency.

Command format: # AA6 (cr) Read PWM frequency

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AAAAA, **BBBBB** (cr) AAAAA represents the frequency of channels 0-3, BBBBB represents the frequency of channels 4-7

Command format: # AA6S read reset PWM value

Response format:! **AAAAA**, **BBBBB** (**cr**) AAAAA represents the reset frequency of channels 0-3, BBBBB represents the reset frequency of channels 4-7

E-mail: sales@wayjun.cn

Application example 1: User command (character format) # 016 (cr)

Module response (character format)! 01000,02000(cr)

Explanation: The PWM frequency for channels 0-3 is 1KHz, and the PWM frequency for channels 4-7 is

2KHz.

Application Example 2: User Command (Character Format) # 016S (cr)

Module response (character format)! 00100,00200 (cr)

Explanation: The PWM reset frequency for channels 0-3 is 100Hz, and the PWM reset frequency for channels 4-7 is 200Hz.

8. Set PWM frequency command

Explanation: To set the output PWM frequency or reset PWM frequency, only a single channel can be set. Range 00000~65535, set to 00000 to turn off PWM output and output as switch level output. The factory setting for all channels is 00000.

Command format: # AA7NAAAA (cr) N=0 indicates setting the PWM frequency for channels 0-3, and N=1 indicates setting the PWM frequency for channels 4-7.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setting

Command format: # AA7SNAAAAA (cr) N=0 indicates setting the PWM reset frequency for channels 0-3,

N=1 indicates setting the PWM reset frequency for channels 4-7.

Response format:! AA (cr) indicates successful setting

Application example 1: User command (character format) # 017000100 (cr)

Module response (character format)! 01(cr)

Explanation: Set the PWM frequency of channels 0-3 to 100Hz.

Application example 2: User command (character format) # 017S100500 (cr)

Module response (character format)! 01(cr)

Explanation: Set the reset PWM frequency for channels 4-7 to 500Hz.

9. Modify the numerical command of DI counter

Explanation: You can modify the value of the DI counter and reset it to zero to start counting again.

Command format: \$AA1NAAAAAAAA (cr) Modify the count value of channel N

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setting

Application example: User command (character format) \$01150000000000 (cr)

Module response (character format)! 01(cr)

Explanation: Set the count value of channel 5 to 0.

10. Set PWM output reverse command

Explanation: Set whether the PWM output needs to be inverted between high and low levels before outputting. The factory setting is 00000000.

Command format: \$AA3BBBBB (cr) Set whether the PWM output takes the reverse command.

Parameter description: AA module address, value range 00~FF (hexadecimal). The factory address is 01, which is

Shenzhen WAYJUN Industrial Automation

converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setting

Parameter description: BBBBB represents the switch state, with 8 numbers arranged in the order of DO7~DO0

Value 0: The PWM output of this channel is normal; Value 1: The PWM of this channel takes the inverse output

Application example: User command (character format) \$013000000 (cr)

Module response (character format)! 01(cr)

Explanation: Set all channel PWM to output normally.

11. Read whether the PWM output takes the reverse command

Explanation: Check if the PWM output is set to reverse.

Command format: \$AA4 (cr) Read PWM output with reverse command.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! BBBBBBB (cr) indicates whether the PWM output is set to reverse

Parameter description: **BBBBB** represents the switch state, with 8 numbers arranged in the order of DO7~DO0

Value 0: The PWM output of this channel is normal; Value 1: The PWM of this channel takes the inverse output

Application example: User command (character format) \$014 (cr)

Module response (character format)! 11111110(cr)

Explanation: The 0-channel PWM outputs normally, while the 1-7 channel PWM outputs in reverse.

12. Set the counting method of DI counter

Explanation: Set the DI counter to count rising or falling edges. The factory setting is 00000000. The setting takes effect after the module is restarted.

Command format: \$AA5BBBB (cr) Set the counting method of the DI counter.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setting

Parameter description: BBBBBB represents switch status, 8 numbers, arranged in the order of DI7~DI0

Value 0: The rising edge count of the channel; Value 1: The descending edge count of this channel

Application example: User command (character format) \$01511110000 (cr)

Module response (character format)! 01(cr)

Explanation: Set the falling edge count for channels 7 to 4 and the rising edge count for channels 3 to 0.

13. Read the counting method of DI counter

Explanation: Read whether the DI counter counts the rising edge or the falling edge.

Command format: \$AA6 (cr) reads the counting method of the DI counter.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

E-mail: sales@wayjun.cn

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! BBBBBB (cr) represents the counting method of the DI counter.

Parameter description: BBBBBB represents switch status, 8 numbers, arranged in the order of DI7~DI0

Value 0: The rising edge count of the channel; Value 1: The descending edge count of this channel

Application example: User command (character format) \$016 (cr)

Module response (character format)! 11111110(cr)

Explanation: 0 channel rising edge count, 1-7 channel falling edge count.

14. Set the number of pulses per revolution for DI

Explanation: Set the number of pulses per revolution for DI. Set according to the parameters of the device connected to DI, with a factory default value of 1000. Only after setting the correct number of pulses can the DI speed be read.

Command format: **\$AA7NAAAA** sets the number of pulses per revolution for DI channel N. **AAAAA** represents the number of pulses, such as 1000800 or

600 and so on.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Response format:! AA (cr) indicates successful setting

Application example: User command (character format) \$017100300

Module response (character format)! 01(cr)

Explanation: Set the number of pulses per revolution for DI1 to 300.

15. Read the number of pulses per revolution of DI

Explanation: Read the number of pulses per revolution for all DI channels.

Command format: \$AA8 reads the number of pulses per revolution for all DIs, arranged in sequence from 0 to 7.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Response format:! AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA (cr)

Indicates the number of pulses per revolution for DI0~DI7.

Application example: User command (character format) \$018

Module response (character format)! 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000 (cr)

Explanation: The number of pulses per revolution for all DI channels is 1000.

16. Set whether the DI count value will be automatically saved when the power is turned off

Explanation: Set whether the count value of DI is automatically saved when the power is turned off. The factory default value is 0 (not automatically saved, reset to zero when the power is turned off).

Command format: \$AASW

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Is the command to automatically save the count value of DI when the power is turned off.

W 0: Do not automatically save, power off and reset to zero; 1: Power off automatically saves DI count

E-mail: sales@wayjun.cn

value.

Response format:! AA (cr) indicates successful setting

Application example: User command (character format) \$0180

Module response (character format)! 01(cr)

Explanation: Set DI to not save count values and automatically reset the count after power failure.

17. Set the pull-up switch for DI and DO

Description: Set the pull-up switch for DI and DO, with a factory default value of 00 (both DI and DO have the pull-up function turned off).

Command format: \$AAQXY

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Set the pull-up switch command for DI and DO.

X 0: DI turns off the pull-up voltage; 1: Connect the pull-up voltage to DI. X: Keep the original settings.

Y 0: DO turns off the pull-up voltage; 1: Connect the pull-up voltage to DO. X: Keep the original settings.

Response format:! AA (cr) indicates successful setting

Application example: User command (character format) \$01Q11

Module response (character format)! 01(cr)

Explanation: Set both DI and DO to apply pull-up voltage. When DI is an NPN input, it can be set to turn on the DI pull-up voltage.

When DO requires voltage output, it can be set to turn on the DO pull-up voltage.

18. Set the filtering time for DI

Explanation: Set the filtering time for DI. 1 represents 1mS, and the factory default is 0. The photoelectric switch input is set to 0, and it is recommended to set the mechanical switch or relay input to 20~100mS. The setting will take effect after restarting.

Command format: **\$AALWNAAAA** sets the filtering time for DI channel N. N is the counter code, with a value of 012345678, corresponding to DI0~DI7. Setting N to 'M' means setting the filtering time for all channels simultaneously. **AAAAA** represents filtering time, such as 0, 20, or 50.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Response format:! AA (cr) indicates successful setting

Application example: User command (character format) \$01LW100020

Module response (character format)! 01(cr)

Explanation: Set the filtering time for DI1 to 20, which is 20mS.

19. Read the filtering time of DI

Explanation: Read the filtering time of all DI channels.

Command format: \$AALR reads the filtering time of all DIs, arranged in the order of DI0~DI7.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

Response format:! AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA

Indicates the filtering time for DI0~DI7.

Application example: User command (character format) \$01LR

Module response (character format)! 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020 (cr)

Explanation: The filtering time for all DI channels is 20mS.

20. Reset all parameters set by the above character command to factory settings.

Explanation: The parameters set by the above character commands in the module will be reset to factory settings, and the module will automatically restart after completion.

Command format: \$AA900 (cr) Set parameters to factory settings.

Parameter description: **AA** module address, value range 00~FF (hexadecimal). The factory address is 01, which is converted to hexadecimal as the ASCII code for each character. If address 01 is replaced with hexadecimal, it will be 30H and 31H.

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! AA (cr) indicates successful setup, and the module will automatically restart.

Application example: User command (character format) \$01900

Module response (character format)! 01(cr)

Explanation: Parameters are reset to factory settings.

21. Configure WJ63 module command

Explanation: Set the address, baud rate, and checksum status for a WJ63 module. The configuration information is stored in non-volatile memory EEPROM.

Command format: % AANNTTCCFF (cr)

Parameter description: % delimiter.

AA module address, with a value range of 00 to FF (hexadecimal).

NN represents the new module hexadecimal address, with values ranging from 00 to FF.

TT uses hexadecimal to represent type encoding. The WJ63 product must be set to 00.

CC uses hexadecimal to represent baud rate encoding.

Baud rate code	Baud rate
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 band

Table 2 Baud rate codes

FF uses 8-bit hexadecimal to represent data format and checksum. Note that from bits2 to bits5, it is not necessary to set it to zero.

Bit7 Bit 6 Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
------------------	-------	-------	------	-------	-------

E-mail: sales@wayjun.cn

Table 3 Data format, checksum code

Bit7: Reserved bit, must be set to zero

Bit6: checksum status, 0: prohibited; For 1: Allow

Bit5-bit2: No need, it must be set to zero.

Bit1-bit0: Data format bit. 00: Engineering Units

10: Two complement in hexadecimal

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! The AA (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation, or a configuration jumper is not installed before changing the baud rate or checksum.

Parameter description:! The delimiter indicates that the command is valid.

? The delimiter indicates that the command is invalid.

AA represents the input module address

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If you are configuring the module for the first time, AA=00, NN equals the new address. If the module is reconfigured to change the address, input range, and data format, AA equals the currently configured address, and NN equals the current or new address. If you want to reconfigure the module to change the baud rate or checksum status, you must install a configuration jumper to put the module into the default state. At this time, the module address is 00H, that is, AA=00H, NN is equal to the current or new address.

If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.

Application example: User command% 0011000600 (cr)

Module response! 11(cr)

Explanation: % delimiter.

00 means that the original address of the WJ63 module you want to configure is 00H.

11 indicates that the new module's hexadecimal address is 11H.

00 type code, WJ63 product must be set to 00.

06 represents a baud rate of 9600 baud.

00 indicates that the data format is in engineering units and checksum is prohibited.

22. Read configuration status command

Explanation: Read configuration for a specified WJ63 module.

Command format: **\$AA2 (cr)**Parameter description: **\$delimiter**.

AA module address, with a value range of 00 to FF (hexadecimal).

2 represents the command to read the configuration status

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Response format:! The **AATTCCFF** (cr) command is valid.

? The AA (cr) command is invalid or an illegal operation.

Parameter description:! Boundary symbol.

AA represents the input module address.

TT stands for type code.

CC stands for baud rate encoding. See Table 2

FF is shown in Table 3

(cr) End symbol, upper computer enter key, hexadecimal is 0DH.

Other instructions: If the format is incorrect, the communication is incorrect, or the address does not exist, the module will not respond.

E-mail: sales@wayjun.cn

Application example: User command \$302 (cr)

Module response! 300F0600(cr)

Explanation:! Boundary symbol.

30 indicates that the WJ63 module address is 30H.

00 represents the input type code.

06 represents a baud rate of 9600 baud.

00 indicates that checksum is prohibited.

Modbus RTU communication protocol:

The factory initial settings of the module are as follows:

The Modbus address is 01 Baud rate 9600 bps

Method to put the module into default state:

There is an Initiate switch located on the side of the WJ63 module. Turn the Initiat switch to the Initiat position, then turn on the power, and the module will enter the default state. In this state, the module temporarily returns to its default state: address 01, baud rate 9600. When unsure of the specific configuration of a module, users can query the address and baud rate registers 40201-40202 to obtain the actual address and baud rate of the module, or modify the address and baud rate as needed.

Note: Please turn the Initiat switch to the NORMAL position during normal use.

Supports Modbus RTU communication protocol, with command format following the standard Modbus RTU communication protocol.

The function codes supported by WJ63 are as follows:

Functio	on code	name	explain
01	Read Coil Status	Read coil status	1 represents high level, 0 represents low level.
03	Read Holding Register	Read and hold register	1 represents high level, 0 represents low level.
05	Write Single Coil	Write a single coil	1 indicates that the transistor is conducting, and
			0 indicates that the transistor is disconnected.
06	Write Single Register	Write a single register	1 indicates that the transistor is conducting, and
			0 indicates that the transistor is disconnected.
fifteen	Write Multiple Coils	Write multiple coils	
sixteen	Write Multiple Registers	Write multiple registers	

Register Description:

Supports registers with function codes 01, 05, and 15

Address	0X	Address (PC, DCS)	Data content	attri	Data Explanation
(PLC)				bute	
00001		0	DO0 output switch	Read/	Output status of DO channels 0-7
			quantity	Write	0 indicates that the transistor is
00002		one	DO1 output switch	Read/	disconnected,
			quantity	Write	1 indicates that the transistor is conducting
00003		two	DO2 output switch	Read/	
			quantity	Write	
00004		three	DO3 output switch	Read/	

		quantity	Write	
00005	four	DO4 output switch	Read/	
		quantity	Write	
00006	five	DO5 output switch	Read/	
		quantity	Write	
00007	six	DO6 output switch	Read/	
		quantity	Write	
00008	seven	DO7 output switch	Read/	
		quantity	Write	
00009	eight	DO0 output switch	Read/	Reset output status of DO channels 0-7
		quantity	Write	(default value is 0)
00010	nine	DO1 output switch	Read/	0 indicates that the transistor is
		quantity	Write	disconnected after resetting,
00011	ten	DO2 output switch	Read/	1 indicates that the transistor conducts
		quantity	Write	after resetting
00012	eleven	DO3 output switch	Read/	
		quantity	Write	
00013	twelve	DO4 output switch	Read/	
		quantity	Write	
00014	thirteen	DO5 output switch	Read/	
		quantity	Write	
00015	fourteen	DO6 output switch	Read/	
		quantity	Write	
00016	fifteen	DO7 output switch	Read/	
		quantity	Write	
00017	sixteen	Output of DO channel	Read/	DO channels 0~7, (default value is 0)
		0 is reversed	Write	0 indicates normal PWM output,
00018	seventeen	Output of DO channel	Read/	1 represents the output after PWM
		1 is reversed	Write	inversion
00019	eighteen	Output of DO channel	Read/	
		2 is reversed	Write	
00020	nineteen	Output of DO channel	Read/	
		3 is reversed	Write	
00021	twenty	Output of DO channel	Read/	
		4 is reversed	Write	
00022	twenty-one	Output of DO channel	Read/	
		5 is reversed	Write	
00023	twenty-two	Output of DO channel	Read/	
		6 is reversed	Write	
00024	twenty-three	Output inversion of	Read/	
		DO channel 7	Write	
00025	twenty-four	Counting method for	Read/	DI channels 0~7, (default value is 0)
		DI0 input	Write	0 is the rising edge count,
00026	twenty-five	Counting method for	Read/	1 is the falling edge count
		DI1 input	Write	

00027	twenty-six	Counting method for	Read/	
		DI2 input	Write	
00028	twenty-seven	Counting method for	Read/	
		DI3 input	Write	
00029	twenty-eight	Counting method for	Read/	
		DI4 input	Write	
00030	twenty-nine	Counting method for	Read/	
		DI5 input	Write	
00031	thirty	Counting method for	Read/	
		DI6 input	Write	
00032	thirty-one	Counting method for	Read/	
		DI7 input	Write	
00033	thirty-two	DI0 input switch	read-	Level status of DI channels 0-7
		quantity	only	0 represents a low-level input,
00034	thirty-three	DI1 input switch	read-	1 represents a high-level input
		quantity	only	
00035	thirty-four	DI2 input switch	read-	
		quantity	only	
00036	thirty-five	DI3 input switch	read-	
		quantity	only	
00037	thirty-six	DI4 input switch	read-	
		quantity	only	
00038	thirty-seven	DI5 input switch	read-	
		quantity	only	
00039	thirty-eight	DI6 input switch	read-	
		quantity	only	
00040	thirty-nine	DI7 input switch	read-	
		quantity	only	

Supports registers with function codes 03, 06, and 16, and the addresses in the table are decimal numbers. The storage order for 32-bit long integers and floating-point numbers is CDAB.

Address	s 4X	Address (PC, DCS)	Data content	attri	Data Explanation
(PLC)				bute	
forty	thousand	0	DO output PWM0	Read/	DO output channels 0-7, PWM output
and one				Write	value,
forty	thousand	one	DO output PWM1	Read/	Integer, range 0~10000
and two				Write	
forty	thousand	two	DO output PWM2	Read/	
and thre	ee			Write	
forty	thousand	three	DO output PWM3	Read/	
and four	r			Write	
forty	thousand	four	DO output PWM4	Read/	
and five	;			Write	
forty	thousand	five	DO output PWM5	Read/	
and six				Write	

		1		
forty thousand	six	DO output PWM6	Read/	
and seven			Write	
forty thousand	seven	DO output PWM7	Read/	
and eight			Write	
forty thousand	eight	DO channel 0~3	Read/	Pulse frequency, (default value is 0)
and nine		frequency	Write	Integer, range 0~65535 Hz
forty thousand	nine	DO channel 4-7	Read/	Set to 0, indicating switch output
and ten		frequency	Write	Set to 1~65535, indicating PWM output
40017~40018	16~17	DI channel 0 count	Read/	Long integers (0x0000000~0xFFFFFFF),
	10 17		Write	DI channels count from 0 to 7.
40019~40020	18~19	DI channel 1 count	Read/	The storage order is CDAB.
10019 10020	10 17	Di chamier i count	Write	The low 16 bits of channel 0 are stored in
40021~40022	20~21	DI channel 2 count	Read/	register 40017,
10021 10022	20 21	Di chamiei 2 count	Write	The high 16 bits of channel 0 are stored in
40023~40024	22~23	DI channel 3 count	Read/	register 40018,
40023**40024	22'-23	Di chamici 3 count	Write	The other channels follow the same
40025~40026	24~25	DI channel 4 count	Read/	pattern.
40023/340020	24.523	Di chamici 4 count	Write	Parisin.
40027~40028	26~27	DI channel 5 count	Read/	
40027~40028	20~27	Di chamici 3 count	Write	
40029~40030	28~29	DI Channel 6 Count	Read/	
40029~40030	20~29	Di Channel o Count	Write	
40031~40032	30~31	DI channel 7 count	Read/	-
40031~40032	30~31	Di channel / count	Write	
			WITTE	
forty thousand	forty	Number of pulses per	Read/	An unsigned integer (default value at
and forty-one		revolution for DI0	Write	factory is 1000), set based on the number
forty thousand	forty-one	Number of pulses per	Read/	of pulses per revolution. After setting,
and forty-two		revolution for DI1	Write	registers 40101~40108 correspond to the
forty thousand	forty-two	Number of pulses per	Read/	speed of the corresponding channel.
and forty-three		revolution for DI2	Write	
forty thousand	forty-three	Number of pulses per	Read/	
and forty-four		revolution for DI3	Write	
forty thousand	forty-four	Number of pulses per	Read/	
and forty-five	lotty tout	revolution for DI4	Write	
forty thousand	forty-five	Number of pulses per	Read/	
and forty-six	10114 1110	revolution for DI5	Write	
forty thousand	forty-six	Number of pulses per	Read/	
and forty-seven	101ty-51A	revolution for DI6	Write	
forty thousand	forty-seven	Number of pulses per	Read/	
	10119-86/611	revolution for DI7	Write	
and forty-eight		16volution 10f D1/	write	
forty thousand	sixty-four	PWM0 reset output	Read/	PWM reset output values for channels 0 to
and sixty-five		value	Write	7,
and sixty iive		, 4140	,,,116	',

		1		
forty thousand	sixty-five	PWM1 reset output	Read/	(The default value is 5000)
and sixty-six		value	Write	Integer, range 0~10000
forty thousand	sixty-six	PWM2 reset output	Read/	
and sixty-seven		value	Write	
forty thousand	sixty-seven	PWM3 reset output	Read/	
and sixty-eight		value	Write	
forty thousand	sixty-eight	PWM4 reset output	Read/	
and sixty-nine		value	Write	
forty thousand	sixty-nine	PWM5 reset output	Read/	
and seventy		value	Write	
forty thousand	seventy	PWM6 reset output	Read/	
and seventy-one		value	Write	
forty thousand	seventy-one	PWM7 reset output	Read/	
and seventy-two		value	Write	
forty thousand	seventy-two	Channel 0~3	Read/	Pulse frequency reset output value,
and seventy-three		frequency reset value	Write	(default value is 0)
forty thousand	seventy-three	Channel 4-7 frequency	Read/	Integer, range 0~65535 Hz
and seventy-four		reset value	Write	Set to 0, indicating switch output
				Set to 1~65535, indicating PWM output
437	A LL (DC DCC)	D 4 4		D . D
Address 4X	Address (PC, DCS)	Data content	attri	Data Explanation
(PLC)	• • •		bute	0.7
forty thousand	eighty	Automatic saving of		0: Do not automatically save, power off
and eighty-one		DI count values	Write	and reset to zero; (default value is 0)
1				1 D CC / / 11 DI
				1: Power off automatically saves DI count
		Discoult are socied.	D 1/	value.
forty thousand	eighty-one	DI's pull-up switch	Read/	value. 0: DI turns off the pull-up voltage;
forty thousand and eighty-two	eighty-one	DI's pull-up switch	Read/ Write	value. 0: DI turns off the pull-up voltage; (default value is 0)
and eighty-two			Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI.
and eighty-two forty thousand	eighty-one eighty-two	DI's pull-up switch DO's pull-up switch	Write Read/	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage;
and eighty-two			Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0)
and eighty-two forty thousand and eighty-three	eighty-two	DO's pull-up switch	Write Read/ Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO.
and eighty-two forty thousand and eighty-three forty thousand		DO's pull-up switch Parameter reset to	Write Read/ Write Read/	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of
and eighty-two forty thousand and eighty-three	eighty-two	DO's pull-up switch	Write Read/ Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory
and eighty-two forty thousand and eighty-three forty thousand	eighty-two	DO's pull-up switch Parameter reset to	Write Read/ Write Read/	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically
and eighty-two forty thousand and eighty-three forty thousand	eighty-two	DO's pull-up switch Parameter reset to	Write Read/ Write Read/	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory
and eighty-two forty thousand and eighty-three forty thousand and eighty-nine	eighty-two eighty-eight	DO's pull-up switch Parameter reset to factory settings	Write Read/ Write Read/ Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion
and eighty-two forty thousand and eighty-three forty thousand and eighty-nine forty thousand	eighty-two	DO's pull-up switch Parameter reset to	Write Read/ Write Read/ Write read-	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer.
forty thousand and eighty-three forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and	eighty-two eighty-eight	DO's pull-up switch Parameter reset to factory settings	Write Read/ Write Read/ Write	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the
forty thousand and eighty-three forty thousand and eighty-nine forty thousand and eighty-nine	eighty-two eighty-eight one hundred	DO's pull-up switch Parameter reset to factory settings Speed of DI channel 0	Write Read/ Write Read/ Write read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the number of pulses set in registers
forty thousand and eighty-three forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and one forty thousand	eighty-two eighty-eight	DO's pull-up switch Parameter reset to factory settings	Write Read/ Write Read/ Write read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the
forty thousand and eighty-three forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and one forty thousand one hundred and one hundred and	eighty-two eighty-eight one hundred	DO's pull-up switch Parameter reset to factory settings Speed of DI channel 0	Write Read/ Write Read/ Write read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the number of pulses set in registers
forty thousand and eighty-three forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and one forty thousand one hundred and two	eighty-two eighty-eight one hundred one hundred and one	DO's pull-up switch Parameter reset to factory settings Speed of DI channel 0 Speed of DI channel 1	Write Read/ Write Read/ Write read- only read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the number of pulses set in registers
forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and one hundred and two forty thousand one hundred and two	eighty-two eighty-eight one hundred one hundred and one one hundred and	DO's pull-up switch Parameter reset to factory settings Speed of DI channel 0	Write Read/ Write Read/ Write read- only read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the number of pulses set in registers
forty thousand and eighty-three forty thousand and eighty-three forty thousand and eighty-nine forty thousand one hundred and one forty thousand one hundred and two	eighty-two eighty-eight one hundred one hundred and one	DO's pull-up switch Parameter reset to factory settings Speed of DI channel 0 Speed of DI channel 1	Write Read/ Write Read/ Write read- only read- only	value. 0: DI turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DI. 0: DO turns off the pull-up voltage; (default value is 0) 1: Connect the pull-up voltage to DO. If set to FF00, all register parameters of the module will be restored to factory settings, and the module will automatically restart after completion Unsigned integer. The speed is calculated based on the number of pulses set in registers

	1 1 1 1	a 1 apr 1 12		
forty thousand	one hundred and	Speed of DI channel 3	read-	
one hundred and	three		only	
four				
forty thousand	one hundred and	Speed of DI channel 4	read-	
one hundred and	four		only	
five				
forty thousand	one hundred and	Speed of DI channel 5	read-	
one hundred and	five	Speed of D1 chainlet 3		
	live		only	
six				
forty thousand	one hundred and six	Speed of DI channel 6	read-	
one hundred and			only	
seven				
forty thousand	one hundred and	Speed of DI channel 7	read-	
one hundred and	seven		only	
eight				
-8				
40129~40130	128~129	Frequency of DI	read-	32-bit floating-point number, collected
		channel 0	only	frequency.
40131~40132	130~131	Frequency of DI	read-	The storage order is CDAB.
40131~40132	130~131	1 7		
		channel 1	only	If floating-point numbers are not
40133~40134	132~133	Frequency of DI	read-	supported and integers need to be read,
		channel 2	only	please refer to registers 40145~40160
40135~40136	134~135	Frequency of DI	read-	
		channel 3	only	
40137~40138	136~137	Frequency of DI	read-	
		channel 4	only	
40139~40140	138~139	Frequency of DI	read-	
40137/240140	130,4137	channel 5		
40141 40142	140 141		only	
40141~40142	140~141	Frequency of DI	read-	
		channel 6	only	
40143~40144	142~143	Frequency of DI	read-	
		channel 7	only	
40145~40146	144~145	Frequency of DI	read-	32-bit long integer, collected frequency.
		channel 0	only	The storage order is CDAB.
40147~40148	146~147	Frequency of DI	read-	The low 16 bits of channel 0 are stored in
1011, 10110		channel 1	only	register 40129,
40140 40150	149 140		-	The high 16 bits of channel 0 are stored in
40149~40150	148~149	1 7	read-	_
		channel 2	only	register 40130,
40151~40152	150~151	Frequency of DI	read-	The other channels follow the same
		channel 3	only	pattern.
40153~40154	152~153	Frequency of DI	read-	
		channel 4	only	
40155~40156	154~155	Frequency of DI	read-	
		channel 5	only	
40157, 40159	156 157			
40157~40158	156~157	Frequency of DI	read-	

		channel 6	only	
40159~40160	158~159	Frequency of I	OI read-	
		channel 7	only	
40181~40188	180~187	DI channels 0~7	Read/	Eiltening time for DI shannels 0.7
40181~40188	180~187		Write	Filtering time for DI channels 0-7 Unsigned integer. Each register
		Filtering time	Wille	Unsigned integer. Each register corresponds to the filtering time of a
				channel. 1 represents a filtering time of
				1mS, with the photoelectric switch input
				set to 0 and the mechanical switch or relay
				input recommended to be set to
				20-100mS. The setting will take effect
				after restarting.
Address 4X	Address (PC, DCS)	Data content	attri	Data Explanation
(PLC)			bute	
forty thousand	two hundred	Module address	Read/	Integer, effective after restart, range
two hundred and			Write	0x0000-0x00FF
one				
forty thousand	two hundred and	Baud rate	Read/	Integer, effective after restart, range
two hundred and	one		Write	0x0004-0x000A
two				0x0004 = 2400 bps,
				0x0005 = 4800 bps 0x0006 = 9600 bps
				0x0000 - 9000 bps, $0x0007 = 19200 bps$
				0x0007 - 19200 bps 0x0008 = 38400 bps
				0x0000 = 57600 bps
				0x000A = 115200bps
				1
forty thousand	two hundred and ten	Module Name	read-	High bit: 0x00 Low bit: 0x63
two hundred and			only	
eleven				

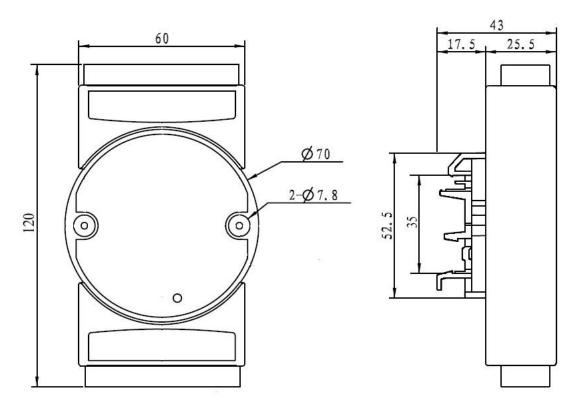
Table 5 Modbus Rtu Register Description

Communication example 1: If the module address is 01, send in hexadecimal: **01030000001840A** to retrieve the data from the register.

01	03	00	00	00	01	eighty-four	0A
Module	Read and hold	Register Address	Low bit register	Register quantity	Low register	CRC check low	CRC check high
address	register	High Bit	address	high	quantity	bit	bit

If the module replies: **0103020333F8A1**, the read data is 0x0333. If it is converted to decimal 819, it means that the PWM output of channel 0 is currently 8.19%.

01	03	02	03	thirty-three	F8	A1
Module	Read and hold	The number of	data-high	data-low	CRC check low bit	CRC check high bit
address	register	bytes in the data				


Communication example 2: If the module address is 01, send 010300100002C5CE in hexadecimal to retrieve the data from the register.

01	03	00	ten	00	02	C5	CE
Module	Read and hold	Register Address	Low bit register	Register quantity	Low register	CRC check low	CRC check high
address	register	High Bit	address	high	quantity	bit	bit

If the module replies: 01030400640000BBEC, the data read is 0x0000 for the top 16 bits and 0x0064 for the bottom 16 bits. The high and low bits are merged into 0x00000064 and converted to decimal as 100, it indicates that the current count value for channel 0 is 100.

01	03	04	00	sixty-	00	00	BB	EC
				four				
Module	Read and hold register	The number of bytes	Data low 16 bits		Data is 16	6 bits	CRC check low bit	CRC check high bit
address		in the data			high			

Dimensions: (Unit: mm)

Can be installed on standard DIN35 rails

guarantee:

Within two years from the date of sale, if the user complies with the storage, transportation, and usage requirements and the product quality is lower than the technical specifications, it can be returned to the factory for free repair. If damage is caused due to violation of operating regulations and requirements, device fees and maintenance fees shall be paid.

Copyright:

Copyright © 2021 Shenzhen Weijunrui Technology Co., Ltd.

Without permission, no part of this manual may be copied, distributed, translated, or transmitted. This manual is subject to modification and update without prior notice.

Trademark:

The other trademarks and copyrights mentioned in this manual belong to their respective owners.

Version number: V1.5 Date: March 2022